分析 取MN的中點(diǎn)為Q,連PQ,則MQP為等腰直角三角形,根據(jù)MQ=QP=1=$\frac{MN}{2}$=$\frac{1}{2}•\frac{2π}{\frac{ω}{2}}$,求得ω 的值.
解答 解:∵函數(shù)f(x)=$\frac{1}{2}$sin($\frac{1}{2}$ωx+$\frac{π}{6}$)(ω>0,)x∈R的部分圖象如圖所示,
設(shè)M,N是圖象上的最高點(diǎn),P是圖象上的最低點(diǎn),
若△PMN為等腰直角三角形,取MN的中點(diǎn)為Q,連PQ,則MQP為等腰直角三角形.
∴MQ=QP=1=$\frac{MN}{2}$=$\frac{1}{2}•\frac{2π}{\frac{ω}{2}}$,∴ω=2π,
故答案為:2π.
點(diǎn)評(píng) 本題主要考查等腰直角三角形的性質(zhì),正弦函數(shù)的圖象,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | π | B. | $\frac{4π}{3}$ | C. | $\frac{5π}{3}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 3 | C. | ( 2,2 ) | D. | ( 1,1 ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com