18.我校兼程樓共有5層,每層均有兩個(gè)樓梯,由一樓到五樓的走法( 。
A.10種B.16種C.25種D.32種

分析 根據(jù)題意,分析可得從一層到五層共4層樓梯,而每層有2種走法,由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,兼程樓共有5層,共4層樓梯,
每層均有兩個(gè)樓梯,即每層有2種走法,
則一共有2×2×2×2=24=16種走法;
故選:B.

點(diǎn)評(píng) 本題考查分步計(jì)數(shù)原理的應(yīng)用,注意從一層到五層共4層樓梯.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列說(shuō)法正確的是( 。
A.當(dāng)f′(x0)=0時(shí),f(x0)為f(x)的極大值B.當(dāng)f′(x0)=0時(shí),f(x0)為f(x)的極小值
C.當(dāng)f′(x0)=0時(shí),f(x0)為f(x)的極值D.當(dāng)f(x0)為f(x)的極值時(shí),f′(x0)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.把67化為二進(jìn)制數(shù)為( 。
A.1 100 001(2)B.1 000 011(2)C.110 000(2)D.1 000 111(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若ABCD為平行四邊形ABCD,E是CD中點(diǎn),且$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b$,則$\overrightarrow{AE}$=(  )
A.$\frac{1}{2}\overrightarrow a+\overrightarrow b$B.-$\frac{1}{2}\overrightarrow a+\overrightarrow b$C.$\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知P(a,1)是角β終邊上的一點(diǎn),且$cosβ=-\frac{{3\sqrt{10}}}{10}$,
(1)求a,sinβ,tanβ的值;   
(2)求$\frac{{sin(\frac{π}{2}+β)cos(-π-β)}}{{sin(\frac{11π}{2}-β)cos(\frac{9π}{2}+β)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如果α的終邊過(guò)點(diǎn)(2sin30°,-2cos30°),那么sinα=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知復(fù)數(shù)z=1+i(i為虛數(shù)單位),a、b∈R,
(Ⅰ)若$ω={z^2}+3\overline z-4$,求|ω|;
(Ⅱ)若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知 (a+b+c)(a+b-c)=3ab
(1)求角C;
(2)若邊c=2,S△ABC=$\frac{{\sqrt{3}}}{2}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.點(diǎn)A(x,y)是675°角終邊上異于原點(diǎn)的一點(diǎn),則$\frac{y}{x}$的值為( 。
A.1B.-1C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案