已知角α的頂點(diǎn)與直角坐標(biāo)的原點(diǎn)重合,始邊為x軸的正半軸,終邊落在直線y=kx上,此直線過點(diǎn)A(k-1,k2+1),則cos2α的值為(  )
分析:把點(diǎn)A(k-1,k2+1)代入直線的方程求得k=-1,可得直線過點(diǎn)A(-2,2),可求cosα=
x
r
 的值,再利用二倍角的余弦公式求出cos2α的值.
解答:解:把點(diǎn)A(k-1,k2+1)代入直線的方程可得 k2+1=k (k-1),解得k=-1.
故直線過點(diǎn)A(-2,2),故cosα=
x
r
=
- 2
2
2
=-
2
2
,cos2α=2cos2α-1=0,
故選A.
點(diǎn)評:本題主要考查任意角的三角函數(shù)的定義,二倍角的余弦公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正△ABC的頂點(diǎn)A在平面α上,頂點(diǎn)B,C在平面α的同一側(cè),D為BC的中點(diǎn),若△ABC在平面α上的射影是以A為直角頂點(diǎn)的三角形,則直線AD與平面α所成角的正弦值的范圍是(  )
A、[
6
3
,1)
B、[
6
3
,
3
2
)
C、[
1
2
,
3
2
)
D、(
1
2
,
6
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,始邊在x軸的正半軸上,終邊經(jīng)過點(diǎn)P(-1,2),
求(1)sinα,cosα,tanα
(2)
sin(α-5π)cos(-
π
2
-α)cos(8π-α)
sin(α-
2
)sin(-α-4π)tan(α+π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正△ABC的頂點(diǎn)A在平面α上,頂點(diǎn)B、C在平面α的同一側(cè),D為BC的中點(diǎn),若△ABC在平面α上的投影是以A為直角頂點(diǎn)的三角形,則直線AD與平面α所成角的正弦值的范圍為
[
6
3
,
3
2
)
[
6
3
3
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,始邊在x軸的正半軸上,終邊經(jīng)過點(diǎn)P(-1,2),求sin(2α+
4
)+tan(2α-π)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,始邊在x的正半軸上,終邊在y=-2x且x≤0,求sin(2α+
3
)的值.

查看答案和解析>>

同步練習(xí)冊答案