在等比數(shù)列{an}中,已知a6-a4=24,a3a5=64,則{an}前8項的和S8等于
 
考點:等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列的性質(zhì)和題意易得a4=8或a4=-8,結(jié)合a6-a4=24可得a6,進(jìn)而可得公比q,代求和公式可得.
解答: 解:由等比數(shù)列的性質(zhì)可得a42=a3a5=64,
∴a4=8或a4=-8,又a6-a4=24,
∴當(dāng)a4=8時a6=32,公比q滿足q2=
a6
a4
=4;
當(dāng)a4=-8時a6=16,公比q滿足q2=
a6
a4
=-2(舍去),
∴q2=4,q=±2,
當(dāng)q=2時,a1=1,{an}前8項的和S8=
a1(1-q8)
1-q
=255,
當(dāng)q=-2時,a1=-1,{an}前8項的和S8=
a1(1-q8)
1-q
=85,
故答案為:255或85
點評:本題考查等比數(shù)列的求和公式,涉及分類討論的思想,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四面體OABC中,各棱長都相等,E、F分別為AB,OC的中點,求異面直線OE與BF所夾角得余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+bx+1在x=-1處取得極大值,在x=3處取極小值.
(Ⅰ)求f(x)的解析式并指出其單調(diào)區(qū)間;
(Ⅱ)討論方程f(x)=k的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=3,an=3an-1-2an-2(n≥3).
(1)求a3的值;
(2)證明:數(shù)列{an-an-1}(n≥2)是等比數(shù)列;
(3)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),滿足f(x+1)=-f(x),當(dāng)當(dāng)x∈[0,2]時,f(x)=2x-x2,則函數(shù)f(x)在[-2,0]上的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

m,n表示直線,α,β,γ表示平面,給出下列三個命題:
(1)若α∩β=m,n?α,n⊥m,則n⊥β
(2)若α⊥β,α∩γ=m,β∩γ=n,則n⊥m
(3)若m⊥α,n⊥β,m⊥n,則α⊥β
其中正確的命題為( 。
A、(1)(2)
B、(3)
C、(2)(3)
D、(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
a-1
(x-1),(x≥a)
1
a-2
(x-2),(x<a)

(1)若a=
3
2
,則f(x)的最小值是
 

(2)已知存在t1,t2使得f(t1)=
1
2
,f(t2)=
3
2
,則t1-t2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P(x,y)為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上任意一點,F(xiàn)1、F2是它的左、右焦點,若∠F1PF2=θ,求證:S△PF1F2=b2•tan
θ
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為F、G,且F⊆G.若對任意的x∈F,都有f(x)=g(x),則稱g(x)為f(x)在G上的一個“延拓函數(shù)”.已知f(x)=2x(x≤0),若g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是偶函數(shù),則g(x)的解析式是( 。
A、log2|x|
B、2|x|
C、log
1
2
|x|
D、(
1
2
)|x|

查看答案和解析>>

同步練習(xí)冊答案