如圖,在平面直角坐標系xOy中,已知橢圓=1的左、右頂點為A、B,右焦點為F.設過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設x1=2,x2,求點T的坐標;
(3)設t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關).

(1)x=(2)(3)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,

已知橢圓E:的離心率為,過左焦點且斜率為的直線交
橢圓E于A,B兩點,線段AB的中點為M,直線交橢圓E于C,D兩點.
(1)求橢圓E的方程;
(2)求證:點M在直線上;
(3)是否存在實數(shù),使得四邊形AOBC為平行四邊形?若存在求出的值,若不存在說明理
由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的焦點在軸上,離心率為,對稱軸為坐標軸,且經(jīng)過點
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓的中心在原點O,右焦點F在x軸上,橢圓與y軸交于A、B兩點,其右準線l與x軸交于T點,直線BF交橢圓于C點,P為橢圓上弧AC上的一點.

(1)求證:A、C、T三點共線;
(2)如果=3,四邊形APCB的面積最大值為,求此時橢圓的方程和P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1.又l與l2交于P點,設l與橢圓C的兩個交點由上至下依次為A、B(如圖).

(1)當l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(,0),其短軸的一個端點到點F的距離為.
(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B、D是橢圓C上的兩相異點,且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知過曲線上任意一點作直線的垂線,垂足為,且.
⑴求曲線的方程;
⑵設、是曲線上兩個不同點,直線的傾斜角分別為,
變化且為定值時,證明直線恒過定點,
并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,若,且.
(1)求動點的軌跡的方程;
(2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數(shù)的值.

查看答案和解析>>

同步練習冊答案