4.已知數(shù)列{an}是等差數(shù)列,a1=tan225°,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項和,則S2016=( 。
A.2 016B.-2 016C.3 024D.-3 024

分析 利用等差數(shù)列的通項公式可得公差d,可得-a2n-1+a2n=3.即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵a1=tan225°=1,a5=13a1=13,
∴13=1+4d,解得d=3.
∴an=1+3(n-1)=3n-2.
∴-a2n-1+a2n=-[3(2n-1)-2]+(3×2n-2)=3.
∴數(shù)列{(-1)nan}的前2016項和S2016=3×1008=3024.
故選:C.

點評 本題考查了等差數(shù)列的通項公式與前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)的定義域為R,其導(dǎo)函數(shù)f′(x)的圖象如圖,則f(x)的極值點有( 。
A.3個B.4個C.5個D.6個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知動圓M與直線y=2相切,且與定圓C:x2+(y+3)2=1外切,求動圓圓心M的軌跡方程( 。
A.x2=-24yB.y2=12xC.y2=-6xD.x2=-12y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知拋物線C:y2=2px(p>0)的焦點為F,準線為l,A為C上一點,若以F為圓心,F(xiàn)A為半徑的圓F交l于B、D,且FB⊥FD,△ABD的面積為$\sqrt{2}$,則圓F的方程為$(x-\frac{1}{2})^{2}+{y}^{2}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1+2i}{1-i}$,則復(fù)數(shù)z的虛部是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(Ⅰ)若t∈R,t≠0時,求復(fù)數(shù)z=$\frac{1}{t}$+ti的模的取值范圍;
(Ⅱ)在復(fù)數(shù)范圍內(nèi)解關(guān)于z方程|z|2+(z+$\overline z$)i=$\frac{3-i}{2+i}$(i為虛數(shù)單位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.$\frac{7}{12}$π弧度=105 度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.(1-tan215°)cos215°的值等于( 。
A.$\frac{{1-\sqrt{3}}}{2}$B.1C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)G為△ABC的重心,$\overrightarrow{AG}$=2$\overrightarrow{AM}$,則( 。
A.$\overrightarrow{BM}$=-$\frac{2}{3}$$\overrightarrow{BA}$+$\frac{1}{6}$$\overrightarrow{BC}$B.$\overrightarrow{BM}$=$\frac{2}{3}\overrightarrow{BA}$+$\frac{1}{6}\overrightarrow{BC}$C.$\overrightarrow{BM}$=$\frac{2}{3}\overrightarrow{BA}$-$\frac{1}{6}\overrightarrow{BC}$D.$\overrightarrow{BM}$=-$\frac{2}{3}\overrightarrow{BA}$-$\frac{1}{6}\overrightarrow{BC}$

查看答案和解析>>

同步練習冊答案