某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為億元,其中用于風(fēng)景區(qū)改造為億元。該市決定制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列三個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年改造生態(tài)環(huán)境總費(fèi)用至少億元,至多億元;③每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.
,請(qǐng)你分析能否采用函數(shù)模型y=作為生態(tài)環(huán)境改造投資方案.

能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.

解析試題分析:本題主要考查利用導(dǎo)數(shù)研究簡(jiǎn)單實(shí)際問(wèn)題,考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值問(wèn)題,考查函數(shù)思想,考查綜合分析和解決問(wèn)題的能力和計(jì)算能力.對(duì)函數(shù)求導(dǎo),判斷導(dǎo)數(shù)恒大于0,所以得出函數(shù)是增函數(shù)滿足條件①,構(gòu)造新函數(shù),通過(guò)求導(dǎo)判斷函數(shù)的單調(diào)性,由②可知,所以判斷上函數(shù)的單調(diào)性和最值,最值符合③的要求,所以綜上可得可以采用此函數(shù)模型.
試題解析:∵,
∴函數(shù)是增函數(shù),滿足條件①,
設(shè)
,
,得.
當(dāng)時(shí),,上是減函數(shù),
當(dāng)時(shí),,上是增函數(shù),
,即,上是減函數(shù),在上是增函數(shù),
∴當(dāng)時(shí),有最小值為,
當(dāng)時(shí),,
當(dāng)時(shí),,
∴能采用函數(shù)模型作為生態(tài)環(huán)境改造投資方案.
考點(diǎn):1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2. 利用導(dǎo)數(shù)求函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)上的奇函數(shù),且
(1)求的值
(2)若,,求的值
(3)若關(guān)于的不等式上恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)某商店商品每件成本10元,若售價(jià)為25元,則每天能賣出288件,經(jīng)調(diào)查,如果降低價(jià)格,銷售量可以增加,且每天多賣出的商品件數(shù)t與商品單價(jià)的降低值(單位:元,)的關(guān)系是t=.
(1)將每天的商品銷售利潤(rùn)y表示成的函數(shù);
(2)如何定價(jià)才能使每天的商品銷售利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.
(Ⅰ)當(dāng)時(shí),判斷的奇偶性,并說(shuō)明理由;
(Ⅱ)當(dāng)時(shí),若,求的值;
(Ⅲ)若,且對(duì)任何不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在圓上任取一點(diǎn),設(shè)點(diǎn)軸上的正投影為點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)形成的軌跡為曲線.
(1)求曲線的方程;
(2)已知點(diǎn),若、是曲線上的兩個(gè)動(dòng)點(diǎn),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c4/c/1zvhl3.png" style="vertical-align:middle;" />的奇函數(shù)滿足,且當(dāng)時(shí),.
(Ⅰ)求上的解析式;
(Ⅱ)若存在,滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬(wàn)元)隨投資收益(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求,并分析函數(shù)是否符合這個(gè)要求,并說(shuō)明原因;
(2)若該公司采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
⑴判斷函數(shù)的單調(diào)性,并證明;
⑵求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中常數(shù)滿足
(1)若,判斷函數(shù)的單調(diào)性;
(2)若,求時(shí)的的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案