已知各項(xiàng)均為實(shí)數(shù)的數(shù)列{an}為等比數(shù)列,且滿足a1+a2=12,a2a4=1則a1=( 。
A、9或
1
16
B、
1
9
或16
C、
1
9
1
16
D、9或16
考點(diǎn):等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等比數(shù)列{an}的公比是q,由等比數(shù)列的通項(xiàng)公式列出方程,求出q和a1的值.
解答: 解:設(shè)等比數(shù)列{an}的公比是q,
因?yàn)閍1+a2=12,a2a4=1,所以
a1+a1q=12
a1q(a1q3)=1
,
化簡得,12q2-q-1=0,解得q=
1
3
或q=-
1
4
,
所以a1=9或16,
故選:D.
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式,以及方程思想,考查化簡計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若f(x)=ax2+2x+1只有一個(gè)零點(diǎn),則a=1;
③若lga+lgb=lg(a+b),則a+b的最小值為4;④對于任意實(shí)數(shù)x,有f(-x)=f(x),g(-x)=-g(x),且當(dāng)x>0時(shí),f′(x)>0,g′(x)>0,則當(dāng)x<0時(shí),f′(x)>g′(x),
其中正確的命題有
 
(填所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(sin2θ,cosθ),
b
=(cosθ,1),則“
a
b
”是“tanθ=
1
2
”成立的
 
條件 (選填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,a=10,B=60°,C=45°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(0,2)已知直線l:y=kx+b與圓C:x2+y2=4相交與A,B兩點(diǎn),當(dāng)|PA|•|PB|=4時(shí),試證明點(diǎn)P到直線l的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x||x|<1},B={x|x>-
1
2
}
,則(∁UB)∩A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,1)上單調(diào)遞減的函數(shù)為( 。
A、y=
1
x
B、y=lnx
C、y=cosx
D、y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x,g(x)=-x2+2x+b(b∈R),記h(x)=f(x)-
1
f(x)

(1)判斷h(x)的奇偶性,并證明;
(2)f(x)在x∈[1,2]的上的最大值與g(x)在x∈[1,2]上的最大值相等,求實(shí)數(shù)b的值;
(3)若2xh(2x)+mh(x)≥0對于一切x∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,Sn是{an}的前n項(xiàng)和,且
Sn
=
Sn-1
+1(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an+2n-1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案