設(shè)函數(shù)數(shù)學(xué)公式,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1
(1)求b,c的值;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)設(shè)已知函數(shù)g(x)=f(x)+2x,且g(x)在區(qū)間(-2,-1)內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

解:(1)f′(x)=x2-ax+b.由題意得,即
所以b=0,c=1.
(2)由(1)得f′(x)=x2-ax=x(x-a)(a>0).
當(dāng)x∈(-∞,0)時(shí),f′(x)>0,當(dāng)x∈(0,a)時(shí),f′(x)<0,當(dāng)x∈(a,+∞)時(shí),f′(x)>0,
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,0),(a,+∞);單調(diào)減區(qū)間為(0,a).
(3)g′(x)=x2-ax+2,依題意,存在x∈(-2,-1),使不等式g′(x)=x2-ax+2<0成立.
當(dāng)x∈(-2,-1)時(shí),a<x+≤-2,
所以滿足要求的a的取值范圍是a
分析:(1)由切點(diǎn)坐標(biāo)及切點(diǎn)處導(dǎo)數(shù)值為0,列一方程組,解出即可;
(2)在a>0的條件下,解不等式f′(x)>0及f′(x)<0即可;
(3)g(x)在區(qū)間(-2,-1)內(nèi)存在單調(diào)遞減區(qū)間,即g′(x)<0在區(qū)間(-2,-1)內(nèi)有解,由此可求a的范圍.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及分析問題解決問題的能力,(3)問的解決關(guān)鍵是對(duì)問題準(zhǔn)確轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:《第1章 導(dǎo)數(shù)及其應(yīng)用》2013年單元測(cè)試卷(2)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年內(nèi)蒙古包頭33中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省南充市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)(文科)一輪復(fù)習(xí)講義:2.9 導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案