已知tan(
π
4
+α)=3
,計(jì)算:
(1)tan2α;
(2)
2sinαcosα+3cos2α
5cos2α-3sin2α
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:已知等式左邊利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡,求出tanα的值,
(1)原式利用二倍角的正切函數(shù)公式化簡,將tanα的值代入計(jì)算即可求出值;
(2)原式分子第一項(xiàng)利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間基本關(guān)系化簡,將tan2α的值代入計(jì)算即可求出值.
解答: 解:∵tan(
π
4
+α)=
1+tanα
1-tanα
=3,
∴1+tanα=3-3tanα,即tanα=
1
2
,
(1)∵tanα=
1
2
,
∴tan2α=
2tanα
1-tan2α
=
1
2
1-(
1
2
)2
=
4
3
;
(2)∵tan2α=
4
3
,
∴原式=
sin2α+3cos2α
5cos2α-3sin2α
=
3+tan2α
5-3tan2α
=
3+
4
3
5-3×
4
3
=
13
3
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)圓M過定點(diǎn)A且與定圓O相切,那么動(dòng)圓M的圓心的軌跡是( 。
A、圓,或橢圓
B、圓,或雙曲線
C、橢圓,或雙曲線,或直線
D、圓,或橢圓,或雙曲線,或直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=4上到直線x+y-
2
=0的距離等于1的點(diǎn)有( 。﹤(gè).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)(1,1),交x軸,y軸的正半軸分別于A,B,過A,B作直線3x+y+3=0的垂線,垂足分別為C,D.
(1)當(dāng)AB∥CD時(shí),求CD中點(diǎn)M的坐標(biāo);
(2)當(dāng)|CD|最小時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,用分析法證明:
c-1
+
c+1
<2
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在同一平面內(nèi)的兩個(gè)向量
a
=(
3
sinx+cos(ωx+
π
3
),-1)
,
b
=(1,1-cos(ωx-
π
3
))
,其中ω>0,x∈R.函數(shù)f(x)=
a
b
,且函數(shù)f(x)的最小正周期為π.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移
π
6
個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在[0,
π
2
]
上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin2x+
2
cos2x,x∈R.
(1)求f(x)的最小正周期和遞減區(qū)間;
(2)若f(
α
2
-
π
8
)=
3
2
,α是第二象限的角,求sin2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是:
 

①函數(shù)y=x-
3
2
的定義域是{x|x≠0};
②方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
③α是第二象限角,β是第一象限角,則α>β;
④函數(shù)y=loga(2x-5)-2,(a>0,且a≠1)恒過定點(diǎn)(3,-2);
⑤若3x+3-x=2
2
,則3x-3-x的值為2
⑥若定義在R上的函數(shù)f(x)滿足:對(duì)任意x1,x2∈R有f(x1-x2)=f(x1)-f(x2)+1,則f(x)-1為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校周四下午第五、六兩節(jié)是選修課時(shí)間,現(xiàn)有甲、乙、丙、丁四位教師可開課.已知甲、乙教師各自最多可以開設(shè)兩節(jié)課,丙、丁教師各自最多可以開設(shè)一節(jié)課.現(xiàn)要求第五、六兩節(jié)課中每節(jié)課恰有兩位教師開課(不必考慮教師所開課的班級(jí)和內(nèi)容),則不同的開課方案共有(  )種.
A、20B、19C、16D、15

查看答案和解析>>

同步練習(xí)冊(cè)答案