【題目】如圖,在直角梯形中,,平面外一點在平內(nèi)的射影恰在邊的中點上,.
(1)求證:平面平面;
(2)若在線段上,且平面,求點到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)推導出PQ⊥平面ABCD,PQ⊥AD,CD∥BQ,從而BQ⊥AD,進而AD⊥平面PBQ,由此能證明平面PQB⊥平面PAD.
(2)連接AC與BQ交于點N,則N為AC中點,則點M到平面PAB的距離是點C到平面PAB的距離的,求出三棱錐P-ABC的體積V=,PAB的面積為,設點M到平面PAB的距離為d,由VC-PAB=VP-ABC,能求出點M到平面PAB的距離.
(1)∵P在平面ABCD內(nèi)的射影Q恰在邊AD上,
∴PQ⊥平面ABCD,
∵AD平面ABCD,∴PQ⊥AD,
∵Q為線段AD中點,
∴CD∥BQ,∴BQ⊥AD,∴AD⊥平面PBQ,AD平面PAD,
∴平面PQB⊥平面PAD.
(2)連接AC與BQ交于點N,則N為AC中點,
∴點M到平面PAB的距離是點C到平面PAB的距離的,
在三棱錐P-ABC中,高PQ=,底面積為,
∴三棱錐P-ABC的體積V==,
又△PAB中,PA=AB=2,PB=,
∴△PAB的面積為,
設點M到平面PAB的距離為d,
由VC-PAB=VP-ABC,得=,
解得d=,
∴點M到平面PAB的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的長軸長是短軸長的2倍,且過點.
⑴求橢圓的方程;
⑵若在橢圓上有相異的兩點(三點不共線),為坐標原點,且直線,直線,直線的斜率滿足.
(。┣笞C: 是定值;
(ⅱ)設的面積為,當取得最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(為參數(shù)),.以原點為極點,軸的非負半軸為極軸建立極坐標系.
(I)寫出曲線與圓的極坐標方程;
(II)在極坐標系中,已知射線分別與曲線及圓相交于,當時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,直線與軸的交點為,與拋物線的交點為,且.
(1)求拋物線的方程;
(2)過拋物線上一點作兩條互相垂直的弦和,試問直線是否過定點,若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,圓錐的頂點為A,底面的圓心為O,BC是底面圓的一條直徑,點D,E在底面圓上,已知,.
(1)證明:;
(2)若二面角的大小為,求直線OC與平面ACE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(1)若曲線在點(處的切線與曲線在點處的切線互相垂直,求函數(shù)在區(qū)間上的最大值;
(2)設函數(shù),試討論函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數(shù)據(jù),統(tǒng)計結(jié)果如下表所示,已知這100位顧客中一次購物量超過7件的顧客占.
一次購物量 | 1至3件 | 4至7件 | 8至11件 | 12至15件 | 16件及以上 |
顧客數(shù)(人) | 27 | 20 | 10 | ||
結(jié)算時間(/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
(1)確定,的值,并求顧客一次購物的結(jié)算時間的平均值;
(2)從收集的結(jié)算時間不超過的顧客中,按分層抽樣的方法抽取5人,再從這5人中隨機抽取2人,求至少有1人的結(jié)算時間為的概率.(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求在區(qū)間上的值域;
(2)是否存在實數(shù),對任意給定的,在存在兩個不同的使得,若存在,求出的范圍,若不存在,說出理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程:在直角坐標系中,曲線(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程;
(2)已知點,直線的極坐標方程為,它與曲線的交點為,,與曲線的交點為,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com