過點P(1,1)作直線l,使得它被橢圓
x2
9
+
y2
4
=1所截出的弦的中點恰為P,則直線l的方程為
 
分析:設(shè)出過P點的直線交橢圓于B、C兩點的坐標,代入橢圓方程作差,再結(jié)合F點是線段BC的中點,即可求出直線的斜率,即可得到直線方程.
解答:解:設(shè)過P點的直線交橢圓于B、C兩點,B(x1,y1)、C(x2,y2
則有4x12+9y12=36,4x22+9y22=36,
兩式相減得:4(x1+x2)( x1-x2)+9(y1+y2)( y1-y2)=0
因為P點是線段BC的中點,所以x1+x2=2,y1+y2=2
代入得:kBC=
y1-y2
x1-x2
=-
4
9

所以l的方程為y-1=-
4
9
(x-1),即4x+9y-13=0.
故答案為:4x+9y-13=0.
點評:本題主要考查直線與圓錐曲線的位置關(guān)系.解決本題的關(guān)鍵在于設(shè)出B、C兩點的坐標,代入橢圓方程作差,再結(jié)合F點是線段BC的中點即可求出直線的斜率.這也是解決此類問題的常用方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過點C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點為P,在直線DE上是否存在一點M,使得PM∥面BCD?若存在,請指出點M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高二(上)10月段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=90°,過點C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點為P,在直線DE上是否存在一點M,使得PM∥面BCD?若存在,請指出點M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案