3.甲乙兩種商品在過去一段時間內的價格走勢如圖所示,假設某人持有資金120萬元,他可以在t1至t4的任意時刻買賣這兩種商品,且買賣能夠立即成交(其他費用忽略不計),那么他持有的資金最多可變?yōu)椋ā 。?table class="qanwser">A.120萬元B.160萬元C.220萬元D.240萬元

分析 根據(jù)圖象,在低價時買入,在高價時賣出能獲得最大的利潤.

解答 解:甲在6元時,全部買入,可以買120÷6=20(萬)份,在t2時刻,全部賣出,此時獲利20×2=40萬,
乙在4元時,買入,可以買(120+40)÷4=40(萬)份,在t4時刻,全部賣出,此時獲利40×2=80萬,
共獲利40+80=120萬,
故選:A

點評 本題主要考查函數(shù)的應用問題,讀懂題意,建立數(shù)學模型是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)是偶函數(shù),當x>0時,f(x)=$\frac{a{x}^{2}}{x+1}$.若曲線y=f(x)在點(-1,f(-1))處切線的斜率為-1,則實數(shù)a的值為(  )
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,正方體ABCD-A1B1C1D1中,E、F,M分別是AB,AM,AA1的中點,P,Q分別是A1B1,A1D1上的動點(不與A1重合),且A1P=A1Q.
(1)求證:EF∥平面MPQ;
(2)當平面MPQ與平面EFM所成二面角為直二面角時,求二面角E-MP-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O為AC與BD的交點,E為PB上任意一點.
(1)證明:AC⊥DE;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小為60°,求PD:AD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=$\sqrt{2-x}$+lg(x+1)的定義域為( 。
A.[-1,2]B.[-1,2)C.(-1,2]D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知集合A={x|$\frac{1}{2}$<2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)記M-N={x|x∈M,且x∉N},求A-B與B-A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.比較大小:cos(-508°)<cos(-144°).( 填>,<或=)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,且∠ABC=120°,PD⊥AB,平面PAB⊥平面ABCD,點E,F(xiàn)為棱PB,PC中點,二面角F-AD-C的平面角的余弦值為$\frac{3\sqrt{13}}{13}$.
(1)求棱PA的長;
(2)求PD與平面ADFE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若定義運算a⊙b=$\left\{\begin{array}{l}{b,a≥b}\\{a,a<b}\end{array}\right.$則函數(shù)f(x)=x⊙(2-x)的最大值是1.

查看答案和解析>>

同步練習冊答案