從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示.

(1)直方圖中x的值為________;

(2)在這些用戶中,用電量落在區(qū)間[100,250)內(nèi)的戶數(shù)為________.

 

(1)0.004 4 (2)70

【解析】(1)根據(jù)頻率分布直方圖中各個小矩形的面積之和等于1,可求出x的值;(2)求出月用電量落在[100,250)內(nèi)的頻率,即可求得月用電量在[100,250)內(nèi)的戶數(shù).

(1)由于(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50=1,解得x=0.004 4.

(2)數(shù)據(jù)落在[100,250)內(nèi)的頻率是(0.003 6+0.006 0+0.004 4)×50=0.7,

所以月用電量在[100,250)內(nèi)的戶數(shù)為100×0.7=70.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)=x3-ax+1.

(1)求x=1時,f(x)取得極值,求a的值;

(2)求f(x)在[0,1]上的最小值;

(3)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題

如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明B1C1⊥CE;

(2)求二面角B1?CE?C1的正弦值;

(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

點M、N分別是正方體ABCD—A1B1C1D1的棱A1B1、A1D1的中點,用過A、M、N和D、N、C1的兩個截面截去正方體的兩個角后得到的幾何體如下圖,則該幾何體的正(主)視圖、側(cè)(左)視圖、俯視圖依次為(  )

A.①②③ B.②③④

C.①③④ D.②④③

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題

為備戰(zhàn)2016年奧運會,甲、乙兩位射擊選手進行了強化訓(xùn)練.現(xiàn)分別從他們的強化訓(xùn)練期間的若干次平均成績中隨機抽取8次,記錄如下:

甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3

乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5

(1)畫出甲、乙兩位選手成績的莖葉圖;

(2)現(xiàn)要從中選派一人參加奧運會封閉集訓(xùn),從統(tǒng)計學(xué)角度,你認為派哪位選手參加合理?簡單說明理由;

(3)若將頻率視為概率,對選手乙在今后的三次比賽成績進行預(yù)測,記這三次成績中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值E(ξ).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題

執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的a的值為-1.2,第二次輸入的a的值為1.2,則第一次,第二次輸出的a的值分別為( )

A.0.2,0.2 B.0.2,0.8

C.0.8,0.2 D.0.8,0.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:解答題

(2013·杭州模擬)已知數(shù)列{an}的前n項和Sn=-an-n-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan.

(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式.

(2)設(shè)數(shù)列的前n項和為Tn,證明:n∈N*且n≥3時,Tn>

(3)設(shè)數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有cn+1>cn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題

如果命題“綈(p∧q)”是真命題, 則(  )

A.命題p、q均為假命題

B.命題p、q均為真命題

C.命題p、q中至少有一個是真命題

D.命題p、q中至多有一個是真命題

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題

”是“”的

A.必要不充分條件 B.充分不必要條件

C.充要條件 D.既不充分也不必要條件

 

查看答案和解析>>

同步練習(xí)冊答案