設(shè)f(x)=x2-bx+c,f(0)=4,f(1+x)=f(1-x),則( 。
A、f(bx)≥f(cx
B、f(bx)≤f(cx
C、f(bx)>f(cx
D、f(bx)<f(cx
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意先求出b,c的值,從而判斷函數(shù)值的大小.
解答: 解:∵f(0)=4,∴c=4,
∵f(1+x)=f(1-x),∴對稱軸x=
b
2
=1,∴b=2,
∴bx=2x,cx=4x,f(x)=x2-2x+4,
∴f(2x)≤f(4x),
故選:B.
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì),函數(shù)的對稱性,考查函數(shù)值大小的判斷,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7人排成一排,若A、B兩人連排在一起,C、D、E三人兩兩不相鄰,F(xiàn)、G兩人順序一定,不同的排法有
 
種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是實(shí)數(shù)集R上的單調(diào)增函數(shù),令F(x)=f(x)-f(2-x).
(1)求證:F(x)在R上是單調(diào)增函數(shù);
(2)若F(x1)+F(x2)>0,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定.若M(x,y)為D上的動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(
2
,1),則|
AM
|的最大值為( 。
A、4
2
B、3
2
C、
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是奇函數(shù),且x0是函數(shù)y=f(x)-ex的一個(gè)零點(diǎn),則-x0一定是下列哪個(gè)函數(shù)的零點(diǎn)(  )
A、y=f(-x)ex-1
B、y=f(x)e-x+1
C、y=f(x)ex+1
D、y=f(x)ex-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a-1)
3-ax
在(0,1]上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)cos2x+asinx-a2+2a+5有最大值7,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正實(shí)數(shù),若函數(shù)f(x)=ax3+bx+ab-1是奇函數(shù),則f(2)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一元二次函數(shù)f(x)=x2+bx+c,且不等式x2+bx+c>0的解集為{x|x<-1或x>
1
2
},則f(10x)>0的解集為( 。
A、{x|x<-1或x>lg2}
B、{x|-1<x<lg2}
C、{x|x>-lg2}
D、{x|x<-lg2}

查看答案和解析>>

同步練習(xí)冊答案