已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2x
x+1

(1)若f(x)在x∈[1,3]上有零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
(3)若對(duì)任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)分離參數(shù),利用基本不等式,結(jié)合函數(shù)的單調(diào)性,即可求實(shí)數(shù)a的取值范圍;
(2)根據(jù)二次函數(shù)的圖象和性質(zhì),先將函數(shù)f(x)的解析式進(jìn)行配方,然后討論對(duì)稱軸與區(qū)間[0,2]的位置關(guān)系,可求出函數(shù)y=f(x)的最小值m(a),利用基本不等式,結(jié)合函數(shù)的單調(diào)性,求出g(x)的值域;
(3)根據(jù)函數(shù)的單調(diào)性求出函數(shù)f(x)的最小值和g(x)的最大值,然后使f(x)min>g(x)max,建立關(guān)系式,解之即可求出a的范圍.
解答: 解:(1)由x2-2ax+4=0,可得2a=x+
4
x
,
∵x∈[1,3],
∴2a∈[2,5],
∴a∈[1,2.5];
(2)由f(x)=x2-2ax+4=(x-a)2+4-a2,
得m(a)=
4-a2,1≤a<2
8-4a,a≥2

g(x)=(x+1)+
1
x+1
-2,當(dāng)x∈[0,2]時(shí),x+1∈[1,3],
又g(x)在區(qū)間[0,2]上單調(diào)遞增,故g(x)∈[0,
4
3
].
(3)由題設(shè),得f(x)min>g(x)max,故
1≤a<2
4-a2
4
3
a≥2
8-4a>
4
3

解得1≤a<
2
6
3
為所求的范圍.
點(diǎn)評(píng):本題考查了二次函數(shù)的圖象和性質(zhì),函數(shù)恒成立問(wèn)題,以及函數(shù)單調(diào)性的判定,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
-4x
 ,x≤0
x2
 ,x>0
,若f-1(4)=a,則實(shí)數(shù)a=(  )
A、1或2B、-1或2
C、1或-2D、-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x

(1)判斷函數(shù)f(x)的奇偶性并加以證明;
(2)若a,b∈(-1,1),求證:f(a)+f(b)=f(
a+b
1+ab
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩圓(x-3)2+(y-1)2=r2和(x+2)2+(y+4)2=R2相交于P、Q兩點(diǎn),已知點(diǎn)P的坐標(biāo)為(1,3),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算
lg2+lg5-lg8
lg50-lg40
;
(2)設(shè)3a=4b=36,求
2
a
+
1
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如圖程序,畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a+a-1=3,求a 
1
2
-a -
1
2
及a2+a-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 如圖,在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(1,
3
2
),離心率為
3
2
,又橢圓內(nèi)接四邊形ABCD(點(diǎn)A、B、C、D在橢圓上)的對(duì)角線AC,BD相交于點(diǎn)P(1,
1
4
),且
AP
=2
PC
BP
=2
PD

(1)求橢圓的方程;
(2)求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)是R上的增函數(shù),且過(guò)(-3,-1)和(1,2)兩點(diǎn),集合A={x|f(x)<-1或f(x)>2},關(guān)于x的不等式(
1
2
2x>2-a-x(a∈R)的解集為B.
(1)求集合A;
(2)求使A∩B=B成立的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案