7.若函數(shù)f(x)=4x2-kx-8在[5,8]上是單調(diào)減函數(shù),則k的取值范圍是[64,+∞).

分析 若函數(shù)f(x)=4x2-kx-8在[5,8]上是單調(diào)減函數(shù),則$\frac{k}{8}$≥8,解得k的取值范圍

解答 解:函數(shù)f(x)=4x2-kx-8的圖象是開(kāi)口朝上,且以直線(xiàn)x=$\frac{k}{8}$為對(duì)稱(chēng)軸的拋物線(xiàn),
若函數(shù)f(x)=4x2-kx-8在[5,8]上是單調(diào)減函數(shù),
則$\frac{k}{8}$≥8,
解得:k∈[64,+∞),
故答案為:[64,+∞)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某校早上7:40開(kāi)始上課,假設(shè)該校學(xué)生小張與小王在早上7:10~7:30之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,則小張比小王至少早5分鐘到校的概率為$\frac{9}{32}$.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,⊙O的割線(xiàn)PAB交⊙O于A、B兩點(diǎn),割線(xiàn)PCD經(jīng)過(guò)圓心O,PE是⊙O的切線(xiàn).已知PA=6,AB=7$\frac{1}{3}$,PO=12,則PE=4$\sqrt{5}$,⊙O的半徑是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}中,a1=1,a2=$\frac{1}{3}$,an=$\frac{2}{{{a_{n-1}}}}$-$\frac{1}{{{a_{n+1}}}}$(n≥2),則a6a7=-$\frac{24057}{9607}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a、b、c是三條不重合的直線(xiàn),α、β、γ是三個(gè)不重合的平面.
①a∥c,b∥c⇒a∥b;
②a∥γ,b∥γ⇒a∥b;
③a∥c,α∥c⇒a∥α;
④a∥γ,α∥γ⇒a∥α;
⑤a?α,b?α,a∥b⇒a∥α.
其中正確的命題號(hào)是①⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知2a=3,3b=8,則ab=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若等差數(shù)列{an},{bn}的前n項(xiàng)和分別為An,Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{7n+1}{4n+27}$,則$\frac{{a}_{6}}{_{6}}$等于( 。
A.$\frac{4}{3}$B.$\frac{7}{4}$C.$\frac{3}{2}$D.$\frac{78}{71}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{2}$x2-(a2-a)lnx-x(a<0),且函數(shù)f(x)在x=2處取得極值.
(I)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(II)求函數(shù)f(x)在區(qū)間[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=asinx-bcosx(a≠0)的圖象關(guān)于x=$\frac{π}{4}$對(duì)稱(chēng),則y=f($\frac{3π}{4}$-x)是( 。
A.圖象關(guān)于點(diǎn)(π,0)對(duì)稱(chēng)的函數(shù)B.圖象關(guān)于點(diǎn)$(\frac{3π}{2},0)$對(duì)稱(chēng)的函數(shù)
C.圖象關(guān)于點(diǎn)$(\frac{π}{2},0)$對(duì)稱(chēng)的函數(shù)D.圖象關(guān)于點(diǎn)$(\frac{π}{4},0)$對(duì)稱(chēng)的函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案