17.如圖(1),在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直,圖(2)為該四棱錐的正視圖和側(cè)視圖,它們是腰長為6cm的全等的等腰直角三角形.

(1)根據(jù)圖所給的正視圖、側(cè)視圖,畫出相應(yīng)的俯視圖,并求出該俯視圖的面積;
(2)在四棱錐P-ABCD中,求PA的長.

分析 (1)該四棱錐的俯視圖為邊長為6cm的正方形(內(nèi)含對角線),如圖,即可得出面積.
(2)利用勾股定理即可得出.

解答 解:(1)該四棱錐的俯視圖為邊長為6cm的正方形(內(nèi)含對角線),如圖,其面積為36cm2
(2)由側(cè)視圖可求得$PD=\sqrt{P{C^2}+C{D^2}}=\sqrt{{6^2}+{6^2}}=6\sqrt{2}$.
由正視圖可知AD=6且AD⊥PD,
所以在Rt△APD中,$PA=\sqrt{P{D^2}+A{D^2}}=\sqrt{{{(6\sqrt{2})}^2}+{6^2}}=6\sqrt{3}(cm)$.

點評 本題考查了空間位置關(guān)系、三視圖的應(yīng)用、正方形的面積、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在棱臺ABC-FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,點G為△ABC的重心,N為AB中點,$\overrightarrow{AM}$=λ$\overrightarrow{AF}$(λ∈R,λ>0),
(1)當$λ=\frac{2}{3}$時,求證:GM∥平面DFN;
(2)若直線MN與CD所成角為$\frac{π}{3}$,試求二面角M-BC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+$\frac{2{a}^{2}+1}{a}$|+|x-a|(a>0)
(Ⅰ)證明:f(x)≥2$\sqrt{3}$;
(Ⅱ)當a=1時,求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點M,N分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右頂點,F(xiàn)為其右焦點,|MF|與|FN|的等比中項是$\sqrt{3}$,橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)不過原點O的直線l與該軌跡交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BB1C1C,且四邊形BB1C1C是菱形,∠BCC1=60°.
(1)求證:AC1⊥B1C;
(2)若AC⊥AB1,三棱錐A-BB1C的體積為$\frac{\sqrt{6}}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若圓錐曲線C:x2+my2=1的離心率為2,則m=( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,點B1在底面內(nèi)的射影恰好是BC的中點,且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B-AB1-C1的余弦值為$-\frac{5}{7}$,求斜三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形,$∠DAB=\frac{π}{3}$,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P-EC-D的大小為$\frac{π}{4}$?若存在,求出AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義1:若函數(shù)f(x)在區(qū)間D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在區(qū)間D上也可導(dǎo),則稱函數(shù)f(x)在區(qū)間D上的存在二階導(dǎo)數(shù),記作f″(x)=[f′(x)]′.
定義2:若函數(shù)f(x)在區(qū)間D上的二階導(dǎo)數(shù)恒為正,即f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間D上為凹函數(shù).已知函數(shù)f(x)=x3-$\frac{3}{2}$x2+1在區(qū)間D上為凹函數(shù),則x的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案