A. | 8 | B. | 10 | C. | 9或10 | D. | 8或9 |
分析 利用等差數列{an}的通項公式和前n項和公式列出方程組,求出首項和公差,從而求出前n項和Sn,再利用配方法能求出使Sn取最大值時n的值.
解答 解:∵等差數列{an}的前n項和為Sn,且a3=7,S6=39,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=7}\\{6{a}_{1}+\frac{6×5}{2}d=39}\end{array}\right.$,
解得a1=9,d=-1,
∴Sn=9n+$\frac{n(n-1)}{2}×(-1)$=-$\frac{{n}^{2}}{2}+\frac{19n}{2}$=-$\frac{1}{2}$(n-$\frac{19}{2}$)2+$\frac{361}{8}$,
∴使Sn取最大值時n的值為9或10.
故選:C.
點評 本題考查使等差數列的前n項和Sn取最大值時n的值的求法,是中檔題,解題時要認真審題,注意等差數列的性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{19}{27}$ | B. | $\frac{27}{19}$ | C. | $\frac{11}{15}$ | D. | $\frac{15}{11}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{2014}{2015}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com