已知(
x
-
1
2
4x
n的展開式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.
(1)證明:展開式中沒有常數(shù)項(xiàng);
(2)求展開式中所有有理項(xiàng).
分析:(1)利用二項(xiàng)展開式的通項(xiàng)公式求出前三項(xiàng)的系數(shù),列出方程求出n,再利用二項(xiàng)展開式的通項(xiàng)公式求出通項(xiàng),令x的指數(shù)為0得到常數(shù)項(xiàng),方程無解,得證.
(2)令展開式中的x的指數(shù)為有理數(shù),求出k值,再求出相應(yīng)的有理項(xiàng).
解答:解:依題意,前三項(xiàng)系數(shù)的絕對(duì)值是1,C1n
1
2
),C2n
1
2
2,
且2C1n
1
2
=1+C2n
1
2
2
即n2-9n+8=0,∴n=8(n=1舍去),
∴展開式的第k+1項(xiàng)為Ck8
x
8-k(-
1
2
4x
k
=(-
1
2
kCk8•x
8-k
2
•x-
k
4
=(-1)k•Ck8•x
16-3k
4

(1)證明:若第k+1項(xiàng)為常數(shù)項(xiàng),
當(dāng)且僅當(dāng)
16-3k
4
=0,即3k=16,
∵k∈Z,∴這不可能,∴展開式中沒有常數(shù)項(xiàng).
(2)若第k+1項(xiàng)為有理項(xiàng),當(dāng)且僅當(dāng)
16-3k
4
為整數(shù),
∵0≤k≤8,k∈Z,∴k=0,4,8,
即展開式中的有理項(xiàng)共有三項(xiàng),它們是:
T1=x4,T5=
35
8
x,T9=
1
256
x-2
點(diǎn)評(píng):本題考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
+
1
2
4x
n的展開式前三項(xiàng)的系數(shù)成等差數(shù)列,則展開式中有理項(xiàng)的個(gè)數(shù)是( 。
A、1B、0C、3D、與n有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項(xiàng)式(
x
+
1
2
4x
)n
的展開式中,前三項(xiàng)的系數(shù)成等差數(shù)列.
(1)求n;
(2)求展開式中的一次項(xiàng);
(3)求展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知(
x
-
1
2
4x
n的展開式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.
(1)證明:展開式中沒有常數(shù)項(xiàng);
(2)求展開式中所有有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二項(xiàng)式(
x
+
1
2
4x
)n
的展開式中,前三項(xiàng)的系數(shù)成等差數(shù)列.
(1)求n;
(2)求展開式中的一次項(xiàng);
(3)求展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案