5.《九章算術(shù)》卷第五《商功》中,有問題“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈.問積幾何?”,意思是:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈;上棱長2丈,無寬,高1丈(如圖).
問它的體積是多少?”這個問題的答案是( 。
A.5立方丈B.6立方丈C.7立方丈D.9立方丈

分析 由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,利用所給數(shù)據(jù),即可求出體積.

解答 解:將該幾何體分成一個直三棱柱,兩個四棱錐,則
$V=\frac{1}{2}×3×1×2+2×\frac{1}{3}×1×3×1=5$,
故選:A.

點(diǎn)評 本題考查幾何體體積的計算,正確分割與計算是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.甲、乙兩家外賣公司,其單個送餐員的日工資方案如下:甲公司底薪70元,每單提成2元;乙公司無底薪,40單以內(nèi)(含40 單)的部分每單提成4元,超出40 單的部分每單提成6元.假設(shè)同一公司的送餐員同一天的送餐單數(shù)相同,現(xiàn)從兩家公司各抽取一名送餐員,分別記錄其100天的送餐單數(shù),得到如下頻數(shù)分布表:
甲公司被選取送餐員送餐單數(shù)頻數(shù)分布表
送餐單數(shù) 3839404142
天數(shù)2040201010
乙公司被選取送餐員送餐單數(shù)頻數(shù)分布表
送餐單數(shù) 3839404142
天數(shù)1020204010
將其頻率作為概率,請回答以下問題:
(1)若記乙公司單個送餐員日工資為X元,求X的分布列和數(shù)學(xué)期望;
(2)小明將要去其中一家公司應(yīng)聘送餐員,若甲公司承諾根據(jù)每位送餐員的表現(xiàn),每個季度將會增加300元至600元不等的獎金,如果每年按300個工作日計算,請利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,去哪一家公司的經(jīng)濟(jì)收入可能會多一些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某公司未來對一種新產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
單價x(元)456789
銷量y(件)908483807568
由表中數(shù)據(jù),求得線性回歸方程為$\hat y=-4x+\hat a$,當(dāng)產(chǎn)品銷量為76件時,產(chǎn)品定價大致為7.5元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≥4}\\{2x-y-12≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x+y的最小值為( 。
A.-8B.-2C.8D.$\frac{44}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|y=lg(3-2x)},B={x|x2≤4},則A∪B=(  )
A.$\{\left.x\right|-2≤x<\frac{3}{2}\}$B.{x|x<2}C.$\{\left.x\right|-2<x<\frac{3}{2}\}$D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知四棱錐S-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,點(diǎn)E是棱AD的中點(diǎn),點(diǎn)F在棱SC上,且$\overrightarrow{SF}=λ\overrightarrow{SC}$,SA∥平面BEF.
(Ⅰ)求實(shí)數(shù)λ的值;
(Ⅱ)求二面角S-BE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,圓錐的橫截面為等邊三角形SAB,O為底面圓圓心,Q為底面圓周上一點(diǎn).
(Ⅰ)如果BQ的中點(diǎn)為C,OH⊥SC,求證:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,求該圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“Z=$\frac{1}{sinθ+cosθ•i}$-$\frac{1}{2}$(其中i是虛數(shù)單位)是純虛數(shù).”是“θ=$\frac{π}{6}$+2kπ”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時,f(x)=e-x(x-1);
②函數(shù)f(x)有兩個零點(diǎn);
③f(x)<0的解集為(-∞,-1)∪(0,1);
④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正確的命題為①③④ (把所有正確命題的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案