7.食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
(1)請將列聯(lián)表補(bǔ)充完整;
患三高疾病不患三高疾病合計(jì)
24630
121830
合計(jì)362460
(2)為了研究三高疾病是否與性別有關(guān),請計(jì)算出統(tǒng)計(jì)量K2,并說明你有多大把握認(rèn)為患三高疾病與性別有關(guān).
下列的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

分析 (1)利用所給數(shù)據(jù),可得2×2列聯(lián)表;
(2)求出K2,與臨界值比較,即可得出結(jié)論.

解答 解:(1)

患三高疾病不患三高疾病合計(jì)
24630
121830
合計(jì)362460
(2)K2=$\frac{60×(24×18-12×6)^{2}}{36×24×30×30}$=10>7.879,
∴我們有99.5%的把握認(rèn)為患三高疾病與性別有關(guān).

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)知識的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若物體的運(yùn)動方程是s=t3+t2-1,t=3時物體的瞬時速度是(  )
A.27B.31C.39D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知三棱錐A-BCD中,BC⊥CD,AB=AD=$\sqrt{2}$,BC=1,CD=$\sqrt{3}$,則該三棱錐外接球的體積為$\frac{4}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知F為橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),直線PP′過坐標(biāo)原點(diǎn)O,與橢圓C分別交于點(diǎn)P,P′兩點(diǎn),且|PF|=1,|P′F|=3,橢圓C的離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l過橢圓C的右焦點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),若∠AOB是鈍角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{|2x-1|+|x+1|-a}$的定義域?yàn)镽.
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)若a的最大值為k,且m+n=2k(m>0,n>0),求證:$\frac{1}{m}$+$\frac{4}{n}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓E的離心率為e,兩焦點(diǎn)分別為F1,F(xiàn)2,拋物線C以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn),點(diǎn)P為這兩條曲線的一個交點(diǎn),若e|$\overrightarrow{P{F_2}}$|=|$\overrightarrow{P{F_1}}$|,則e的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)f(x)=sin(2x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個單位,所得的圖象對應(yīng)的解析式為( 。
A.y=sin2xB.y=cosxC.y=sin(2x+$\frac{2π}{3}$)D.y=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sin(x+$\frac{5π}{2}$)的圖象關(guān)于( 。
A.原點(diǎn)對稱B.y軸對稱C.直線x=$\frac{5π}{2}$對稱D.直線x=-$\frac{5π}{2}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(3)=1,且3f(x)+xf′(x)>1,則不等式(x-2017)3f(x-2017)-27>0的解集為( 。
A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)

查看答案和解析>>

同步練習(xí)冊答案