設A、B為雙曲線同一條漸近線上的兩個不同的點,已知向量=(1,0),,則雙曲線的離心率e等于
A.2    B.    C.2或  D. 2或
D

試題分析:由已知向量在x軸上的影射長為3。
而||=6,因此A、B點所在的漸進線與x軸的夾角為60°,
=tan60°或= tan60°, e==2或,故選D.
點評:易錯題,本題易忽視雙曲線的焦點在不同坐標軸的情況而誤選A。a,b,c,e的關系要熟悉,本解法通過e=計算,免除了解方程組之困。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

我們把形如的函數(shù)稱為“莫言函數(shù)”,并把其與軸的交點關于原點的對稱點稱為“莫言點”,以“莫言點”為圓心凡是與“莫言函數(shù)”圖象有公共點的圓,皆稱之為“莫言圓”.當,時,在所有的“莫言圓”中,面積的最小值   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(其中為常數(shù))
(1)當時,曲線與曲線有兩個交點.求的值;
(2)若曲線與曲線只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線,直線與該雙曲線只有一個公共點,
k =                .(寫出所有可能的取值)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是拋物線的焦點,準線與軸的交點為,點在拋物線上,且,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2 = 16x的準線方程為(     )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在橢圓上找一點,使這一點到直線的距離的最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線的頂點為坐標原點,焦點軸上,準線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點,命題P:“若直線過定點,則”,請判斷命題P的真假,并證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過拋物線的焦點作傾斜角為的直線交拋物線于、兩點,過點作拋物線的切線軸于點,過點作切線的垂線交軸于點。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:;

查看答案和解析>>

同步練習冊答案