(2012•邯鄲一模)某人睡午覺醒來,發(fā)現(xiàn)表停了,他打開收音機,想聽電臺報時,則他等待時間不多于15分鐘的概率為(  )
分析:由電臺整點報時的時刻是任意的知這是一個幾何概型,電臺整點報時知事件總數(shù)包含的時間長度是60,而他等待的時間不多于15分鐘的事件包含的時間長度是15,兩值一比即可求出所求.
解答:解:由題意知這是一個幾何概型,
∵電臺整點報時,
∴事件總數(shù)包含的時間長度是60,
∵滿足他等待的時間不多于15分鐘的事件包含的時間長度是15,
由幾何概型公式得到P=
15
60
=
1
4

故選B.
點評:本題主要考查了幾何概型,本題先要判斷該概率模型,對于幾何概型,它的結果要通過長度、面積或體積之比來得到,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲一模)閱讀如圖的程序框圖.若輸入n=6,則輸出k的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲一模)如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
2

(Ⅰ)求證:平面EAB⊥平面ABCD;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲一模)已知正項等差數(shù)列{an}的前n項和為Sn,且滿足a1+a5=
1
3
a32
,S7=56.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)若數(shù)列{bn}滿足b1=a1且bn+1-bn=an+1,求數(shù)列{
1
bn
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲一模)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點在直角坐標系的原點處,極軸與x軸的正半軸重合.直線l的參數(shù)方程為:
x=-1+
3
2
t
y=
1
2
t       
(t為參數(shù)),曲線C的極坐標方程為:ρ=4cosθ.
(Ⅰ)寫出C的直角坐標方程,并指出C是什么曲線;
(Ⅱ)設直線l與曲線C相交于P、Q兩點,求|PQ|值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲一模)給出以下命題:①?x∈R,sinx+cosx>1②?x∈R,x2-x+1>0③“x>1”是“|x|>1”的充分不必要條件,其中正確命題的個數(shù)是(  )

查看答案和解析>>

同步練習冊答案