若關(guān)于x的不等式x2+|x-a|<2至少有一個(gè)正數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A、(-
9
4
,2)
B、(-
9
4
,
9
4
C、(-2,
9
4
D、(-2,2)
分析:我們將原不等式變形為:|x-a|<2-x2,我們?cè)谕蛔鴺?biāo)系畫(huà)出y=2-x2(Y>0,X>0)和 y=|x|兩個(gè)圖象,利用數(shù)形結(jié)合思想,易得實(shí)數(shù)a的取值范圍.
解答:精英家教網(wǎng)解:原不等式變形為:|x-a|<2-x2
且 0<2-x2
在同一坐標(biāo)系畫(huà)出y=2-x2(Y>0,X>0)和 y=|x|兩個(gè)圖象
將絕對(duì)值函數(shù) y=|x|向左移動(dòng)當(dāng)右支經(jīng)過(guò) (0,2)點(diǎn),a=-2
將絕對(duì)值函數(shù) y=|x|向右移動(dòng)讓左支與拋物線相切 (1/2,7/4)點(diǎn),a=
9
4
   
故實(shí)數(shù)a的取值范圍是(-2,
9
4

故選 C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是一元二次函數(shù)的圖象,及絕對(duì)值函數(shù)圖象,其中在同一坐標(biāo)中,畫(huà)出y=2-x2(Y>0,X>0)和 y=|x|兩個(gè)圖象,結(jié)合數(shù)形結(jié)合的思想得到答案,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、若關(guān)于x的不等式x2-4x≥m對(duì)任意x∈[-1,1]恒成立,則實(shí)數(shù)m的取值范圍是
(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2-px-q<0的解集為(2,3),則關(guān)于x的不等式qx2-px-1>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2-ax+1≤0,ax2+x-1>0均不成立,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2-2ax+a2-ab+4≤0恰有一個(gè)解,則a2+b2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義區(qū)間長(zhǎng)度m為這樣的一個(gè)量:m的大小為區(qū)間 右端點(diǎn)的值減去左端點(diǎn)的值.若關(guān)于x的不等式x2-x-6a<0有解,且解集的區(qū)間長(zhǎng)度不超過(guò)5個(gè)單位長(zhǎng),則a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案