分析 (1)已知等式表示求出cosC的值,確定出C的度數(shù);
(2)由a,b為已知方程的解,利用韋達(dá)定理求出a+b與ab的值,利用余弦定理求出c的值即可;
(3)由ab,sinC的值,利用三角形面積公式求出三角形ABC面積即可.
解答 解:(1)依題意得,cos(A+B)=cos(π-C)=-cosC=-$\frac{1}{2}$,
∴cosC=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$,
(2)∵a、b是方程x2-2$\sqrt{3}$x+2=0的兩個(gè)根,
∴a+b=2$\sqrt{3}$,ab=2,
由余弦定理得c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=12-4-2=6,
∴c=$\sqrt{6}$;
(3)由(1)(2)知C=$\frac{π}{3}$,ab=2,
則S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 此題考查了余弦定理,韋達(dá)定理,以及三角形面積公式,熟練掌握余弦定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3$\sqrt{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{13}$ | B. | 4 | C. | 5 | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{170}}}{3}$ | D. | $\frac{{\sqrt{149}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com