若x,y滿足條件
2x+y-12≤0
3x-2y+10≥0
x-4y+10≤0
,求z=x+2y+2的最小值,并求出相應(yīng)的x,y值.
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,由圖得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答: 解:由約束條件
2x+y-12≤0
3x-2y+10≥0
x-4y+10≤0
作出可行域如圖,

化目標函數(shù)z=x+2y+2為y=-
x
2
+
z
2
-1
,
當(dāng)直線y=-
x
2
+
z
2
-1
在y軸上的截距最小時,z最小.
由圖可知,最優(yōu)解為A,
聯(lián)立
x-4y+10=0
3x-2y+10=0
,解得A(-2,2).
∴z=x+2y+2的最小值為-2+2×2+2=4.
此時x=-2,y=2.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,A(-2,3),B(3,-2)沿x軸把直角坐標系拆成1200角的二面角,則|
AB
|為( 。
A、
2
B、3
2
C、4
2
D、2
11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某項考試按科目A、科目B依次進行,只有當(dāng)科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率均為
2
3
,科目B每次考試成績合格的概率均為
1
2
.假設(shè)各次考試成績合格與否均互不影響.
(1)求他不需要補考就可獲得證書的概率;
(2)在這項考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
x
3x+2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間中,下列命題正確的是( 。
A、若兩個平面有一個公共點,則它們必有無數(shù)個公共點
B、任意三點都可以確定一個平面
C、分別在不同平面內(nèi)的兩條直線叫異面直線
D、垂直于同一條直線的兩條直線互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=4及直線l:x-y+3=0,則直線l被C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3+x2+x+1有極值的充要條件是( 。
A、a>
1
3
B、a≥
1
3
C、a<
1
3
D、a≤
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sinx(sinx+cosx).
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求函數(shù)f(x)的最大值及此時x的值的集合;
(Ⅲ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a<b<c,且c2<a2+b2,則△ABC為
 
三角形.

查看答案和解析>>

同步練習(xí)冊答案