已知|
a
|=2,|
b
|=5,
a
b
=-3,求|
a
+
b
|,|
a
-
b
|.
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:由題設(shè)條件,對|
a
+
b
|,|
a
-
b
|
分別進行平方,先出和向量模的平方,再開方求兩者和的模.
解答: 解:|
a
|=2,|
b
|=5,
a
b
=-3,
由題意|
a
+
b
|2
=(
a
+
b
)
2
=
a
2
+2
a
b
+
b
2
=4+25-2×3=23,
|
a
+
b
|=
23

|
a
-
b
|
2=(
a
-
b
)2
=
a
2
-2
a
b
+
b
2
=4+25+2×3=35,
|
a
-
b
|=
35
點評:本題考查向量模的求法,對向量的求模運算,一般采取平方方法表示成向量的內(nèi)積,根據(jù)內(nèi)積公式求出其平方,再開方求模,本題是向量中的基本題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某茶樓有四類茶飲,假設(shè)為顧客準備泡茶工具所需的時間互相獨立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計以往為100位顧客準備泡茶工具所需的時間(t),結(jié)果如下:
類別鐵觀音龍井金駿眉大紅袍
顧客數(shù)(人)20304010
時間t(分鐘/人)2346
注:服務(wù)員在準備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.
(1)求服務(wù)員恰好在第6分鐘開始準備第三位顧客的泡茶工具的概率;
(2)用X表示至第4分鐘末已準備好了工具的顧客人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿足條件;①y=f(x)的圖象過點
1
,
1
,②當(dāng)x=-1時,y=f(x)取得最小值是0.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-k2x在
-1
,
1
上是單調(diào)函數(shù),求k的取值范圍;
(3)是否存在自然數(shù)m,使得關(guān)于x的不等式f(x-m)≤x在區(qū)間[1,
4
上有解?若存在,求出自然數(shù)m的取值集合,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的體積為
6
2
,外接球球心為O,且滿足
OA
+
OB
+
OC
=
0
,則正三棱錐P-ABC的外接球半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(2x+1)n=a0+a1x+a2x2+…+anxn中令x=0,就可以求出常數(shù)項,即1=a0.請你根據(jù)其中蘊含的解題方法研究下列問題;若ex=a0+a1x+a2x2+a3x3+a4x4+…+anxn+…,且n≥2,n∈N,則a1+
a2
a0
+
a3
a1
+…+
an
an-2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)sgn(x)=
1,x>0
0,x=0
-1,x<0
,求函數(shù)f(x)=sgn(lnx)-ln2x的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinx>cosx的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
x
+
5-x
,若關(guān)于x的不等式f(x)≤|m-2|恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知(
3
x
-
3x
)n
的展開式的各項系數(shù)之和等于(4
3x
-
1
5x
)5
展開式中的常數(shù)項,求n;
(2)求(1-x)3+(1-x)4+…+(1-x)10展開式中x2項的系數(shù).

查看答案和解析>>

同步練習(xí)冊答案