已知函數(shù)f(x)=[ax2-(3+2a)x+a]•ex+1,a≠0.
(1)若x=-1是函數(shù)f(x)的極大值點(diǎn),求a的取值范圍.
(2)若不等式f′(x)>(x2+x-a)•ex+1對(duì)任意a∈(0,+∞)都成立,求實(shí)數(shù)x的取值范圍.
(3)記函數(shù)g(x)=f(x)+(2a+6)•ex+1,若g(x)在區(qū)間[2,4]上不單調(diào),求實(shí)數(shù)a的取值范圍.
分析:(1)先求導(dǎo)函數(shù),利用x=-1是函數(shù)f(x)的極大值點(diǎn),可得
或,從而求出參數(shù)的范圍;(2)問題等價(jià)于(x
2+1)a-x
2-4x-3>0對(duì)任意a∈(0,+∞)都成立,從而解不等式可得;(3)g(x)在區(qū)間[2,4]上不單調(diào)?ax
2-3x+a+3=0在x∈(2,4)上有解且△≠0,從而可解.
解答:解:(1)
| f′(x)=(ax2-3x-a-3)ex+1 | =[ax-(a+3)][x+1]ex+1=0 |
| |
x1=-1,x2=,
若x=-1是函數(shù)f(x)的極大值點(diǎn),∴
或,
解得,
-<a<0或a>0(6分)
(2)f′(x)>(x
2+x-a)•e
x+1?(x
2+1)a-x
2-4x-3>0對(duì)任意a∈(0,+∞)都成立,
∴-x
2-4x-3≥0?-3≤x≤-1(10分)
(3)g(x)=f(x)+(2a+6)•e
x+1=[ax
2-(3+2a)x+3a+6]•e
x+1
g′(x)=(ax
2-3x+a+3)•e
x+1g(x)在區(qū)間[2,4]上不單調(diào)?ax
2-3x+a+3=0在x∈(2,4)上有解且△≠0
變量分離得,
a=令t(x)=(x∈(2,4)),
求得t(x)的值域?yàn)?span id="kwqe2qw" class="MathJye">(
,
)
∴
<a<(15分)
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值,解決函數(shù)在區(qū)間上的不單調(diào)問題,通常轉(zhuǎn)化為函數(shù)在區(qū)間上有解且△≠0