設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,點A為橢圓上一點,當△AF1F2的面積最大時,△AF1F2為等邊三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)動直線y=kx+m與橢圓有且只有一個公共點P,且與直線x=4相交于點Q,若x軸上存在一定點M(1,0),使得
PM
QM
=0,求橢圓的方程.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)由橢圓性質(zhì)可知當點A為橢圓短軸端點時△AF1F2的面試最大,得到a,c的關(guān)系,則答案可求;
(Ⅱ)由橢圓離心率設(shè)出橢圓方程3x2+4y2-12t=0,和直線方程聯(lián)立得到關(guān)于x的一元二次方程,由判別式等于0得到m,k,t的關(guān)系,用m,k表示P的坐標,結(jié)合x軸上存在一定點M(1,0),使得
PM
QM
=0求得t的值,則橢圓方程可求.
解答: 解:(Ⅰ)當點A為橢圓短軸端點時△AF1F2的面試最大.
此時a=2c,離心率e=
1
2
;
(Ⅱ)∵e=
c
a
=
1
2

c2
a2
=
a2-b2
a2
=
1
4
,
b2
a2
=
3
4
,
可設(shè)b2=3ta2=4t,
∴橢圓的方程為3x2+4y2-12t=0.
3x2+4y2-12t=0
y=kx+m
,得(3+4k2)x2+8kmx+4m2-12t=0.
∵動直線y=kx+m與橢圓有且只有一個公共點P,
∴△=0,即64k2m2-4(3+4m2)(4m2-12t)=0.
整理得m2=3t+4k2t.
設(shè)P(x1,y1),則有x1=-
8km
2(3+4k2)
=-
4km
3+4k2
y1=kx1+m=
3m
3+4k2
,
∴P(-
4km
3+4k2
3m
3+4k2
).
又M(1,0),Q(4,4k+m),
若x軸上存在一定點M(1,0),使得PM⊥QM,
(1+
4km
3+4k2
,-
3m
3+4k2
)•(-3,-(4k+m))
=0恒成立.
整理得3+4k2=m2,
∴3+4k2=3t+4k2t恒成立,故t=1,
所求橢圓方程為
x2
4
+
y2
3
=1
點評:本題主要考查了直線與圓錐曲線的位置關(guān)系的應(yīng)用,直線與曲線聯(lián)立,根據(jù)方程的根與系數(shù)的關(guān)系解題,是處理這類問題的最為常用的方法,但圓錐曲線的特點是計算量比較大,要求考試具備較強的運算推理的能力,是壓軸題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b
(1)若-2≤a≤4,-2≤b≤4,且a∈Z,b∈Z,求方程f(x)=0無實根的概率;
(2)若|a|≤1,|b|≤1,求方程f(x)=
1
4
b2+b-
1
4
無實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三菱柱ABC-A1B1C1中,CA⊥CB,CA=CB=1,AA1=2,且N是棱A1B1的中點,
(Ⅰ)求證:A1B⊥C1N;
(Ⅱ)求直線A1B和直線B1C夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x滿足不等式(log2x)2-log2x2≤0,求函數(shù)y=4x-2x+2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為1的定圓⊙P的圓心P到定直線l的距離為2,Q是l上一動點,⊙Q與⊙P相外切,⊙Q交l于M、N兩點,對于任意直徑MN,平面上恒有一定點A,使得∠MAN為定值.求∠MAN的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)有6名愛好籃球的高三男生,現(xiàn)在考察他們的投籃水平與打球年限的關(guān)系,每人罰籃10次,其打球年限與投中球數(shù)如下表:
學(xué)生編號12345
打球年限x/年35679
投中球數(shù)y/個23345
(Ⅰ)求投中球數(shù)y關(guān)于打球年限x(x∈N,0≤x≤16)的線性回歸方程,若第6名同學(xué)的打球年限為11年,試估計他的投中球數(shù)(精確到整數(shù)).
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2

(Ⅱ)現(xiàn)在從高三年級大量男生中調(diào)查出打球年限超過3年的學(xué)生所占比例為
1
4
,將上述的比例視為概率.現(xiàn)采用隨機抽樣方法在男生中每次抽取1名,抽取3次,記被抽取的3名男生中打球年限超過3年的人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AB∥CD,∠ABD=30°,AB=2CD=2AD=2DE=2,DE⊥平面ABCD,EF∥BD,且BD=2EF.
(Ⅰ)求證:平面ADE⊥平面BDEF;
(Ⅱ)若二面角C-BF-D的大小為60°,求CF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求證:平面PAD與平面PAB垂直;
(2)求直線PC與直線AB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有四個數(shù),前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,且這四個數(shù)的首末兩項之和為37,中間兩項和為
36,求這四個數(shù).

查看答案和解析>>

同步練習(xí)冊答案