下表是某地一家超市在2014年一月份某周的時(shí)間x與每天獲得的利潤(rùn)y(單位:萬元)的有關(guān)數(shù)據(jù).
時(shí)間x星期二星期三星期四星期五星期六
利潤(rùn)y23569
(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程
y
=
b
x+
a
;
(3)估計(jì)星期日獲得的利潤(rùn)為多少萬元.
考點(diǎn):線性回歸方程
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)表中所給的五對(duì)數(shù)據(jù),在平面直角坐標(biāo)系中描出這五個(gè)點(diǎn),得到這組數(shù)據(jù)的散點(diǎn)圖.
(2)根據(jù)表中所給的數(shù)據(jù),求出橫標(biāo)的平均數(shù),把求得的數(shù)據(jù)代入求線性回歸方程的系數(shù)的公式,利用最小二乘法得到結(jié)果,寫出線性回歸方程.
(3)根據(jù)第二問求得的線性回歸方程,代入所給的x的值,預(yù)報(bào)出銷售價(jià)格的估計(jì)值,這個(gè)數(shù)字不是一個(gè)準(zhǔn)確數(shù)值.
解答: 解:(1)由x、y的數(shù)據(jù)可得對(duì)應(yīng)的散點(diǎn)圖為
從上圖可知,這些點(diǎn)大致分布在一條直線附近,
故時(shí)間x與獲得的利潤(rùn)y(萬元)線性相關(guān)關(guān)系顯著.5分
(2)
.
x
=
2+3+4+5+6
5
=4,
.
y
=
2+3+5+6+9
5
=5,
b
=
2×2+3×3+4×5+5×6+6×9-5×4×5
4+9+16+25+36-5×16
=1.7,
所以
a
=
.
y
-
b
.
x
=-1.8,所以
y
=1.7x-1.8.10分
(3)當(dāng)x=7時(shí),
y
=1.7×7-1.8=10.1(萬元),
所以星期日估計(jì)獲得的利潤(rùn)為10.1萬元.12分.
點(diǎn)評(píng):本題考查線性回歸分析,考查散點(diǎn)圖和估計(jì)y的值,本題解題的關(guān)鍵是正確求出橫標(biāo)的平均數(shù),得到樣本中心點(diǎn),在一些題目中正確運(yùn)算時(shí)解題的關(guān)鍵,本題是一個(gè)中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-x,x≥0
log
1
2
(-x),x<0
,則函數(shù)y=f(x)-(x2+1)的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在焦點(diǎn)分別為F1、F2的雙曲線上有一點(diǎn)P,若∠F1PF2=
π
3
,|PF2|=2|PF1|,則該雙曲線的離心率等于(  )
A、2
B、
2
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且方程f(x)=x的解集為{1,2}.
(1)若方程f(x)=x2有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(2)若a<0,記f(x)的最大值為g(a),求a•g(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x5+x+sinx,x∈R,則不等式f(x2-2)+f(x)<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+x,函數(shù)F(x)=f(-x)+f(x)-2x.
(1)求函數(shù)F(x)的零點(diǎn);
(2)設(shè)F(x)的兩個(gè)零點(diǎn)為α、β,且α<β,集合C={x|α≤x≤β},若方程f(ax)-ax+1=5(a>1)在集合C上有解,求實(shí)數(shù)a的取值范圍;
(3)記函數(shù)f(x)在C上的值域?yàn)锳,若函數(shù)g(x)=x2-tx+
t
2
,x∈[0,1]的值域?yàn)锽,且A⊆B,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,O為AC與BD的交點(diǎn),若向量
BC
=3
e1
,向量
DC
=2
e2
,則向量
OA
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直四棱錐P-ABCD中,PD垂直于正方形ABCD所在的平面,E是AP的中點(diǎn)
(1)求證:PC∥平面EBD;
(2)若點(diǎn)D在PC上的射影為F,求證:平面DEF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機(jī)抽取1件,假設(shè)事件A:“取出的2件產(chǎn)品都是二等品”的概率P(A)=0.04
(1)求從該批產(chǎn)品中任取1件是二等品的概率p;
(2)若該批產(chǎn)品共10件,從中任意抽取2件,ξ表示取出的2件產(chǎn)品中二等品的件數(shù),求ξ的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案