【題目】某基建公司年初以100萬元購進一輛挖掘機,以每年22萬元的價格出租給工程隊.基建公司負責(zé)挖掘機的維護,第一年維護費為2萬元,隨著機器磨損,以后每年的維護費比上一年多2萬元,同時該機器第x(x∈N* , x≤16)年末可以以(80﹣5x)萬元的價格出售.
(1)寫出基建公司到第x年末所得總利潤y(萬元)關(guān)于x(年)的函數(shù)解析式,并求其最大值;
(2)為使經(jīng)濟效益最大化,即年平均利潤最大,基建公司應(yīng)在第幾年末出售挖掘機?說明理由.
【答案】
(1)解:y=22x+(80﹣5x)﹣100﹣(2+4+…+2x)=﹣20+17x﹣ x(2+2x)
=﹣x2+16x﹣20=﹣(x﹣8)2+44(x≤16,x∈N),
由二次函數(shù)的性質(zhì)可得,當(dāng)x=8時,ymax=44,
即有總利潤的最大值為44萬元
(2)解:年平均利潤為 =16﹣(x+ ),設(shè)f(x)=16﹣(x+ ),x>0,
由x+ ≥2 =4 ,當(dāng)x=2 時,取得等號.
由于x為整數(shù),且4<2 <5,f(4)=16﹣(4+5)=7,f(5)=7,
即有x=4或5時,f(x)取得最大值,且為7萬元.
故使得年平均利潤最大,基建公司應(yīng)在第4或5年末出售挖掘機
【解析】(1)由題意可得總利潤y等于總收入減去總成本(固定資產(chǎn)加上維護費),結(jié)合二次函數(shù)的最值求法,即可得到最大值;(2)求得年平均利潤為 ,再由基本不等式,結(jié)合x為正整數(shù),加上即可得到最大值,及對應(yīng)的x的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點為,其左頂點在圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線交橢圓于兩點,設(shè)點關(guān)于軸的對稱點為(點與點不重合),且直線與軸的交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在多面體中,是邊長為2的等邊三角形,為的中點,.
(1)若平面平面,證明:;
(2)求證:;
(3)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時, x2+lnx< x3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,射線y=x(x≥0)和y=0(x≥0)上分別依次有點A1、A2 , …,An , …,和點B1 , B2 , …,Bn…,其中 , , .且 , (n=2,3,4…).
(1)用n表示|OAn|及點An的坐標(biāo);
(2)用n表示|BnBn+1|及點Bn的坐標(biāo);
(3)寫出四邊形AnAn+1Bn+1Bn的面積關(guān)于n的表達式S(n),并求S(n)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(I)若曲線在點處的切線平行于軸,求的值;
(II)求函數(shù)的極值;
(III)當(dāng)時,若直線與曲線沒有公共點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩隊參加聽歌猜歌名游戲,每隊3人.隨機播放一首歌曲,參賽者開始搶答,每人只有一次搶答機會(每人搶答機會均等),答對者為本隊贏得一分,答錯得零分.假設(shè)甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , , ,且各人回答正確與否相互之間沒有影響.
(Ⅰ)若比賽前隨機從兩隊的6個選手中抽取兩名選手進行示范,求抽到的兩名選手在同一個隊的概率;
(Ⅱ)用ξ表示甲隊的總得分,求隨機變量ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)求兩隊得分之和大于4的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com