已知函數(shù)f(x)=x3+ax2+b,
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=x+1,求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)單調(diào)遞減.
(1)求a的取值集合A; 
(2)對(duì)任意a∈A∩[-7,+∞)和x∈[0,4],有f(x)>a2恒成立,求實(shí)數(shù)b的取值范圍.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出曲線y=f(x)的導(dǎo)數(shù),利用在點(diǎn)(1,f(1))處的切線方程是y=x+1,即可求a,b的值;
(Ⅱ)(1)要使f(x)在(0,2)內(nèi)單調(diào)遞減,則f′(x)≤0在(0,2)內(nèi)恒成立.即可求a的取值集合A; 
(2)(i)當(dāng)-7≤a≤-6時(shí),f(x)在[0,4]上單調(diào)遞減,函數(shù)的最小值>a2在a∈[-7,-6]上恒成立,求出b的范圍;
(ii)當(dāng)-6<a≤-3時(shí),f(x)在[0,-
2a
3
]
上單調(diào)遞減,[-
2a
3
,4]
上單調(diào)遞增.有f(x)的最小值>a2恒成立,求實(shí)數(shù)b的取值范圍.即可.
解答: 解:(Ⅰ)f′(x)=3x2+2ax,
f/(1)=1
f(1)=2
,即
3+2a=1
1+a+b=2

a=-1
b=2
-----------(4分)
(Ⅱ)(1)要使f(x)在(0,2)內(nèi)單調(diào)遞減,則f′(x)≤0在(0,2)內(nèi)恒成立.
∴3x2+2ax≤0即a≤-
3
2
x
在(0,2)上恒成立.
∴a≤-3即A=(-∞,-3]------------------------(7分)
(2)∵a∈A∩[-7,+∞)=[-7,-3]
(i)當(dāng)-7≤a≤-6時(shí),f(x)在[0,4]上單調(diào)遞減,
fmin(x)=f(4)=64+16a+b>a2在a∈[-7,-6]上恒成立,
∴b>a2-16a-64在a∈[-7,-6]上恒成立∴b>97------------(10分)
(ii)當(dāng)-6<a≤-3時(shí),f(x)在[0,-
2a
3
]
上單調(diào)遞減,[-
2a
3
,4]
上單調(diào)遞增.
fmin(x)=f(-
2a
3
)>a2
在a∈(-6,-3]上恒成立.
b>-
4a3
27
+a2
在a∈(-6,-3]上恒成立
g(a)=-
4a3
27
+a2
a∈(-6,-3]
g/(a)=-
4a2
9
+2a∈(-28,-10]

即g(a)在a∈(-6,-3]上單調(diào)遞減.
∴g(a)>g(-6)=68,∴b>68-----------------------------------(14分)
綜上所述,b>97-------------------------------------------------------(15分)
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等性質(zhì),及導(dǎo)數(shù)應(yīng)用等基礎(chǔ)知識(shí),同時(shí)考查分類討論等綜合解題能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入a1=2,a2=0,a3=1,a4=4,則計(jì)算機(jī)輸出的結(jié)果是(  )
A、2B、0C、1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某城市有一條公路從正西方AO通過市中心O后轉(zhuǎn)向東北方OB,現(xiàn)要修筑一條鐵路L,L在OA上設(shè)一站A,在OB上設(shè)一站B,鐵路在AB部分為直線段,為了市民出行方便與城市環(huán)境問題,現(xiàn)要求市中心O到AB的距離為10km,設(shè)∠OAB=α.
(1)試求AB關(guān)于角α的函數(shù)關(guān)系式;
(2)問把A、B分別設(shè)在公路上離市中心O多遠(yuǎn)處,才能使AB最短,并求其最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高一新生1000人中,來自A,B,C,D,E五個(gè)不同的初中校,現(xiàn)從中隨機(jī)抽取20人,對(duì)其所在初中校進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
初中校 A B C D E
頻率 0.05 m 0.15 0.35 n
(Ⅰ)在抽取的20個(gè)同學(xué)中,來自E學(xué)校的為2人,求m,n的值;
(Ⅱ)在(Ⅰ)的條件下,從來自C和E兩學(xué)校的同學(xué)中任取2人,求抽取的2個(gè)人來自不同學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=ax2,直線y=x+
1
4
經(jīng)過拋物線的焦點(diǎn)F.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)P(x0,y0)(x0≠0)是拋物線上一點(diǎn),過點(diǎn)P且與P處的切線垂直的直線l與拋物線C的另一個(gè)交點(diǎn)為Q,P點(diǎn)關(guān)于焦點(diǎn)F的對(duì)稱點(diǎn)為R,求△PQR面積的最小值和此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空氣質(zhì)量指數(shù)(AQI)是衡量空氣質(zhì)量好壞的標(biāo)準(zhǔn),表是我國(guó)南方某市氣象環(huán)保部門從去年的每天空氣質(zhì)量檢測(cè)數(shù)據(jù)中,隨機(jī)抽取的40天的統(tǒng)計(jì)結(jié)果:
空氣質(zhì)量指數(shù)(AQI)國(guó)家環(huán)保標(biāo)準(zhǔn)頻數(shù)(天)頻率
[0,50]一級(jí)(優(yōu))4
(50,100]二級(jí)(良)20
(100,150]三級(jí)(輕度污染)8
(150,200]四級(jí)(中度污染)4
(200,300]五級(jí)(重度污染)3
(300,+∞)六級(jí)(嚴(yán)重污染)1
(1)若以這40天的統(tǒng)計(jì)數(shù)據(jù)來估計(jì),一年中(365天)該市有多天的空氣質(zhì)量達(dá)到優(yōu)良?
(2)若將頻率視為概率,某中學(xué)擬在今年五月份某三天召開運(yùn)動(dòng)會(huì),以上表的數(shù)據(jù)為依據(jù),問:
①這三天空氣質(zhì)量都達(dá)標(biāo)(空氣質(zhì)量屬一、二、三級(jí)內(nèi))的概率;
②這三天恰好有一天空氣質(zhì)量不達(dá)標(biāo)(指四、五、六級(jí))的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=45°,D為BC中點(diǎn),BC=2.記銳角∠ADB=α.且滿足cosα=-
7
25

(1)求cos∠CAD;
(2)求BC邊上高的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的奇數(shù)項(xiàng)是首項(xiàng)為1公差為d的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2公比為q的等比數(shù)列.?dāng)?shù)列{an}前n項(xiàng)和為Sn,且滿足S3=a4,a3+a5=2+a4
(1)求d和q的值;
(2)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an∈N*,對(duì)于任意n∈N*,an≤an+1,若對(duì)于任意正整數(shù)k,在數(shù)列中恰有k個(gè)k出現(xiàn),則a2014=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案