(本題滿分12分)已知a為常數(shù),且a≠O,函數(shù)f(x)=ax+axlnx+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),若直線y=t與曲線y=f(x)(z∈[]有公共點(diǎn),求t的取值范圍,
解:(1)f(x)=-ax+2+axlnx. 定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052418004857818805/SYS201205241802256562455048_DA.files/image002.png">
f′(x)=alnx. …………………… 2分
因?yàn)?i>a≠0,故:
①當(dāng)a>0時(shí),由f′(x)>0得x>1,由f′(x)<0得0<x<1;
②當(dāng)a<0時(shí),由f′(x)>0得0<x<1,由f′(x)<0得x>1.
綜上,當(dāng)a>0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1);
當(dāng)a<0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞). ……… 6分
(2)當(dāng)a=1時(shí),f(x)=-x+2+xlnx,f′(x)=lnx.
由(1)可得,當(dāng)x在區(qū)間內(nèi)變化時(shí),f′(x),f(x)的變化情況如下表:
x |
1/e |
(1/e,1) |
1 |
(1,e) |
e |
f′(x) |
|
- |
0 |
+ |
|
f(x) |
2-2/e |
單調(diào)遞減 |
極小值1 |
單調(diào)遞增 |
2 |
又2-2/e<2,所以函數(shù)f(x)的值域?yàn)閇1,2]. …………………… 10分
∵直線y=t與曲線y=f(x)總有公共點(diǎn);
∴t的取值范圍是. ………………………………… 12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本題滿分12分)已知△的三個(gè)內(nèi)角、、所對(duì)的邊分別為、、.,且.(1)求的大。唬2)若.求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,,是它的左,右焦點(diǎn).
(1)若,且,,求、的坐標(biāo);
(2)在(1)的條件下,過(guò)動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線(是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過(guò)橢圓的左焦點(diǎn),向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com