如圖,在四棱錐中,底面,底面是平行四邊形,, 是 的中點(diǎn)。
(1)求證:;
(2)求證:;
(3)若,求二面角 的余弦值.
(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)
解析試題分析:(1)連接AC交BD于F,連接EF,由ABCD是平行四邊形,知F為AC的中點(diǎn),由E為SC的中點(diǎn),知SA∥EF,由此能夠證明SA∥平面BDE.
(2)由AB=2,AD=,∠BAD=30°,利用余弦定理得BD=1,由AD2+BD2=AB2,知AD⊥BD.由此能夠證明AD⊥SB.
(3)以DA為x軸,以DB為y軸,以DS為z軸,建立空間直角坐標(biāo)系,利用向量法能夠求出二面角E-BD-C的余弦值.
試題解析:(1)證明:連接AC交BD于F,連結(jié)EF,由ABCD是平行四邊形,知F為AC的中點(diǎn),又E為SC的中點(diǎn),所以SA∥EF,∵SAË平面BDE,EFÌ平面BDE,
∴SA∥平面BDE. 4分
(2)由AB=2,AD=,∠BAD=30°,由余弦定理得
∵ ∴AD⊥BD.
∵SD⊥平面ABCD,ADÌ平面ABCD,
∴AD⊥SD,
∴AD⊥平面SBD,又SBÌ平面SBD,
∴AD⊥SB. 8分
(3)取CD的中點(diǎn)G,連結(jié)EG,F(xiàn)G,
則EG⊥平面BCD,且EG=1,F(xiàn)G∥BC,且FG=
∵AD⊥BD, AD∥BC,∴FG⊥BD,又∵EG⊥BD ∴BD⊥平面EFG,
∴BD⊥EF,故∠EFG是二面角E—BD—C的平面角
在Rt△EFG中 [來(lái)源:學(xué)+科+網(wǎng)]
∴. 12分
考點(diǎn):(1)空間線面的位置關(guān)系;(2)二面角的求法;(3)向量在立體幾何中的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.四邊形與都是邊長(zhǎng)為的正方形,點(diǎn)是的中點(diǎn),平面.
(1)求證:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABDA1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點(diǎn),DE⊥面CBB1.
(1)證明:DE∥面ABC;
(2)求四棱錐CABB1A1與圓柱OO1的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,ABCD是正方形,平面ABCD,E,F(xiàn)是AC,PC的中點(diǎn).
(1)求證:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐S ABC中,平面EFGH分別與BC,CA,AS,SB交于點(diǎn)E,F(xiàn),G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.
求證:(1)AB∥平面EFGH;
(2)GH∥EF;
(3)GH⊥平面SAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)在三棱柱中,側(cè)面為矩形,,,為的中點(diǎn),與交于點(diǎn),側(cè)面.
(1)證明:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有一個(gè)倒圓錐形容器,它的軸截面是一個(gè)正三角形,在容器內(nèi)放一個(gè)半徑為r的鐵球,并注入水,使水面與球正好相切,然后將球取出,求這時(shí)容器中水的深度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com