20.?dāng)?shù)列{an} 滿足a1=1,an+1=2an+3(n∈N*),則a4=29.

分析 an+1=2an+3,變形為an+1+3=2(an+3),利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵an+1=2an+3,∴an+1+3=2(an+3),
∴數(shù)列{an+3}是等比數(shù)列,公比為2,首項(xiàng)為4,
∴an+3=4×2n-1,即an=2n+1-3,
∴${a}_{4}={2}^{5}$-3=29.
故答案為:29.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,AB為圓O的直徑,C在圓O上,CF⊥AB于F,點(diǎn)D為線段CF上任意一點(diǎn),延長(zhǎng)AD交圓O于E,∠AEC=30°.
(1)求證:AF=FO;
(2)若CF=$\sqrt{3}$,求AD•AE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)y=2x3-6x2+m在區(qū)間[-2,2]上有最大值3,求它的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)a滿足1<a<2,命題p:函數(shù)y=lg(2-ax)在區(qū)間[0,1]上是減函數(shù);命題q:x2<1是x<a的充分不必要條件,則(  )
A.p或q為真命題B.p且q為假命題C.?p且q為真命題D.?p或?q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知直線l1:x+y=0,l2:2x+2y+3=0,則直線l1與l2的位置關(guān)系是( 。
A.垂直B.平行C.重合D.相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,a、b、c分別為A、B、C的對(duì)邊,如果a、b、c成等差數(shù)列,B=60°,△ABC的面積為$\frac{\sqrt{3}}{2}$,那么b=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元)有如表的統(tǒng)計(jì)資料:
使用年限x12345
維修費(fèi)用y567810
若由資料知y對(duì)x呈線性相關(guān)關(guān)系.
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)最小二乘法求出線性回歸方程$\hat y$=bx+a的回歸系數(shù)a,b;
(3)估計(jì)使用年限為6年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.長(zhǎng)方體ABCD-A1B1C1D1中,已知A1A=$\sqrt{2}$,AD=1,AB=1,則對(duì)角線AC1與平面ABCD所成角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了解學(xué)生寒假閱讀名著的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
本數(shù)
人數(shù)
性別
012345
男生01432 2
女生001331
(I)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為 X,求隨機(jī)變量 X的分布列和數(shù)學(xué)期望;
(III)試判斷男學(xué)生閱讀名著本數(shù)的方差$s_1^2$與女學(xué)生閱讀名著本數(shù)的方差$s_2^2$的大小(只需寫出結(jié)論).

查看答案和解析>>

同步練習(xí)冊(cè)答案