已知函數(shù)f x=3sin2x+2
3
sinxcosx+5cos2x
(1)若f(α)=5,求tanα的值;
(2)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且(2a-c)cosB=bcosC,求函數(shù)f(x)在(0,B)上的最大值和最小值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦定理
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)化簡可得解析式f(x)=2sin(2x+
π
6
)+4由f(α)=2sin(2α+
π
6
)+4=5,根據(jù)萬能公式可解得tanα的值.
(2)已知等式(2a-c)cosB=bcosC,利用正弦定理可求得B=
π
6
.從而可得2x+
π
6
∈(
π
6
,
π
2
),即可求出函數(shù)f(x)在(0,B)上的最大值為6,最小值為5.
解答: 解:(1)∵f(x)=3sin2x+2
3
sinxcosx+5cos2x
=
3
2
(1-cos2x)+
3
sin2x+
5
2
(1+cos2x)
=4+
3
sin2x+cos2x
=2sin(2x+
π
6
)+4
∴f(α)=2sin(2α+
π
6
)+4=5,可解得sin(2α+
π
6
)=
1
2
,即有
3
sin2α+cos2α=1
∴可得
2
3
tanα
1+tan2α
+
1-tan2α
1+tan2α
=1,從而解得tanα=
3
或0.
(2)已知等式(2a-c)cosB=bcosC,利用正弦定理化簡得:(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,
∵sinA≠0,
∴cosB=
1
2
,
則B=
π
3

∵x∈(0,
π
3
),∴2x+
π
6
∈(
π
6
,
6

∴sin(2x+
π
6
)∈(
1
2
,1)
∴2sin(2x+
π
6
)+4∈(5,6)
∴函數(shù)f(x)在(0,B)上的最大值為6,最小值為5.
點(diǎn)評:本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦定理的應(yīng)用,三角函數(shù)的圖象與性質(zhì),屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓(x-1)2+y2=4與直線x+y+1=0相交于A,B兩點(diǎn),則弦|AB|的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x+4)=f(x-2),則f(3)的值為( 。
A、
1
2
B、0
C、3
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=2x+b與拋物線C:y=
1
2
x2相切于點(diǎn)A,
(1)求實(shí)數(shù)b的值
(2)求以點(diǎn)A為圓心且與拋物線C的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos2
x
2
-sin2
x
2
-2
3
sin
x
2
cos
x
2
-m=0,若方程在[0,π]上有兩個(gè)相異實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-5,0),B(5,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積為-
4
9
,若設(shè)點(diǎn)M(x,y),則點(diǎn)M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)途中要經(jīng)過4個(gè)路口,假設(shè)在各路口遇到紅燈的概率都是
1
4
,且是否遇到紅燈是相互獨(dú)立的,遇到紅燈時(shí)停留的時(shí)間都是2min.
(1)求這名學(xué)生到第三個(gè)路口時(shí)首次遇到紅燈的概率;
(2)求這名學(xué)生在上學(xué)途中因遇到紅燈停留的總時(shí)間X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的
2
3
(細(xì)管長度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個(gè)一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡:當(dāng)
2
<α<2π時(shí),
1
2
+
1
2
1
2
+
1
2
cos2α

(2)求值:tan10°+tan50°+
3
tan10°tan50°.

查看答案和解析>>

同步練習(xí)冊答案