【題目】已知橢圓: 的左焦點(diǎn)為, 為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,過點(diǎn)的直線交橢圓于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求弦的中點(diǎn)的軌跡方程;
(3)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn), 為軸上一點(diǎn),若是菱形的兩條鄰邊,求點(diǎn)橫坐標(biāo)的取值范圍.
【答案】(1)(2)(3)
【解析】試題分析:(1)已知橢圓: 的左焦點(diǎn)為,有,點(diǎn)在橢圓上,得,聯(lián)立求出即得方程(2)設(shè), ,則,當(dāng)時(shí), 點(diǎn)的坐標(biāo)為. 當(dāng)時(shí),∵, ,點(diǎn)差法兩式相減得,
∴,又過點(diǎn),于是的斜率為,∴整理即可
(3)設(shè), 的中點(diǎn),由(2)知, ①
∵,∴.∴,即,整理得②將②代入①中,得,化為,
∵,∴,由得的范圍,從而得m的范圍.
試題解析:
(1)由題意有,且,解得,
∴橢圓的方程為.
(2)設(shè), ,則,
當(dāng)時(shí), 點(diǎn)的坐標(biāo)為.
當(dāng)時(shí),∵, ,
兩式相減得,
∴,又過點(diǎn),于是的斜率為,
∴,
整理得.
∵也滿足上式,
∴的軌跡方程為.
(3)設(shè), 的中點(diǎn),由(2)知, ①
∵,
∴.
∴,即,整理得②
將②代入①中,得,化為,
∵,∴ ,
由(當(dāng)時(shí), 與軸垂直,不合題意,舍去),得,
于是,即點(diǎn)的橫坐標(biāo)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是以線段BC為直徑的圓O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作圓O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,點(diǎn)G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合.如果對(duì)于的每一個(gè)含有個(gè)元素的子集, 中必有4個(gè)元素的和等于,稱正整數(shù)為集合的一個(gè)“相關(guān)數(shù)”.
(Ⅰ)當(dāng)時(shí),判斷5和6是否為集合的“相關(guān)數(shù)”,說明理由;
(Ⅱ)若為集合的“相關(guān)數(shù)”,證明: ;
(Ⅲ)給定正整數(shù).求集合的“相關(guān)數(shù)” 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.
上圖中,已知課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡(jiǎn)稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)為參加某地舉辦的自然科學(xué)營(yíng)活動(dòng),從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.
(ⅰ)設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機(jī)變量的分布列;
(ⅱ)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營(yíng)的費(fèi)用總和,求隨機(jī)變量的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ +b,其中a,b是常數(shù)且a>0.
(1)用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0, ]上是單調(diào)遞減函數(shù);
(2)已知函數(shù)f(x)在區(qū)間[ ,+∞)上是單調(diào)遞增函數(shù),且在區(qū)間[1,2]上f(x)的最大值為5,最小值為3,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (x≠0).
(1)證明函數(shù)f(x)為奇函數(shù);
(2)判斷函數(shù)f(x)在[1,+∞)上的單調(diào)性,并說明理由;
(3)若x∈[﹣2,﹣3],求函數(shù)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(文科選做)如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E、F分別是棱BC,CC1的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一點(diǎn),若A1P∥平面AEF,則線段A1P長(zhǎng)度的取值范圍是_____。
(理科選做)在正方體ABCD-A1B1C1D1中,點(diǎn)E為BB1的中點(diǎn),則平面A1ED與平面ABCD所成的銳二面角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+α)(A>0,ω>0,﹣ <α< )的最小正周期是π,且當(dāng)x= 時(shí),f(x)取得最大值2.
(1)求f(x)的解析式,并作出f(x)在[0,π]上的圖象(要列表);
(2)將函數(shù)f(x)的圖象向右平移m(m>0)個(gè)單位長(zhǎng)度后得到函數(shù)y=g(x)的圖象,且y=g(x)是偶函數(shù),求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式(a2﹣a)4x﹣2x﹣1<0在區(qū)間(﹣∞,1]上恒成立,則實(shí)數(shù)a的取值范圍為( )
A.(﹣2, )
B.(﹣∞, )
C.(﹣ , )
D.(﹣∞,6]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com