分析 (1)由等差數(shù)列的通項公式可知:$\left\{\begin{array}{l}{4{a}_{1}+6d=14}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,即可求得a1和d,即可求得數(shù)列{an}的通項公式;
(2)由(1)可知$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,利用“裂項法”即可求得數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和Tn,$\frac{T_n}{n+2}$=$\frac{n}{2(n+2)^{2}}$=$\frac{1}{2(n+\frac{4}{n}+4)}$,由基本不等式的性質(zhì),即可求得$\frac{T_n}{n+2}$的最大值.
解答 解:(1)設等差數(shù)列公差為d.由已知得$\left\{\begin{array}{l}{4{a}_{1}+6d=14}\\{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+6d)}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$或$\left\{\begin{array}{l}{d=0}\\{{a}_{1}=\frac{7}{2}}\end{array}\right.$ (舍去)
∴an=a1+(n-1)d=n+1,
數(shù)列{an}的通項公式an=n+1;
(2)由(1)可知:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∵數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和Tn,Tn=($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$),
=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$,
=$\frac{1}{2}$-$\frac{1}{n+2}$,
=$\frac{n}{2(n+2)}$
∴$\frac{T_n}{n+2}$=$\frac{n}{2(n+2)^{2}}$=$\frac{1}{2(n+\frac{4}{n}+4)}$≤$\frac{1}{2(2\sqrt{n×\frac{4}{n}}+4)}$=$\frac{1}{16}$,
當且僅當n=$\frac{4}{n}$,解得:n=2,
∴$\frac{T_n}{n+2}$的最大值$\frac{1}{16}$.
點評 本題考查等差數(shù)列的通項公式及前n項和公式,考查“裂項法”求數(shù)列的前n項,基本不等式的應用,考查數(shù)列與不等式的綜合應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 只能作一個 | B. | 不存在 | C. | 至多可以作一個 | D. | 至少可以作一個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要非充分條件 | B. | 充分非必要條件 | ||
C. | 充要條件 | D. | 非充分非必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\sqrt{x}$ | B. | f(x)=lnx | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=tanx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com