A、B兩盞路燈之間長(zhǎng)度是30米,想在其間隨意安兩盞路燈C、D,A與C,B與D之間的距離都不小于10米的概率為
 
考點(diǎn):幾何概型
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:本題考查的知識(shí)點(diǎn)是幾何概型,我們分別用x,y表示C,D兩點(diǎn)的到端點(diǎn)A的距離,則0≤x≤30且0≤y≤120.
我們可以先畫出滿足條件的所有的點(diǎn)對(duì)應(yīng)的平面區(qū)域,又由A與C,B與D之間的距離都不小于10米,分別求出對(duì)應(yīng)平面區(qū)域的面積,
然后代入幾何概型計(jì)算公式即可求解.
解答: 解:分別用x,y表示C,D兩點(diǎn)的到端點(diǎn)A的距離,則0≤x≤30且0≤y≤30.
它表示的平面區(qū)域如下圖中正方形所示,
A與C,B與D之間的距離都不小于10米,則10≤x≤20,0≤y≤20,
它對(duì)應(yīng)的面積如圖中陰影部分所示,
則概率為P=
S正方形OCND
S正方形OAMB
=
20×20
30×30
=
4
9

故答案為:
4
9
點(diǎn)評(píng):幾何概型的概率估算公式中的“幾何度量”,可以為線段長(zhǎng)度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無(wú)關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“如果a,b∈N,ab可被5整除,那么a,b中至少有一個(gè)能被5整除”時(shí),假設(shè)的內(nèi)容應(yīng)為
 
;
①a,b都能被5整除  
②a,b都不能被5整除
③a,b不都能被5整除 
④a不能被5整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax2
在x=2處有極值,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A′B′C′D′中,點(diǎn)E為A1B1的中點(diǎn),F(xiàn)為B1B的中點(diǎn),則AE與CF所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
5
3
x-
2
3
,x∈(
1
2
,1]
-
1
3
x+
1
6
,x∈[0,
1
2
]
,函數(shù)g(x)=asin(
π
6
x)-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,an+1-an=n(n∈N*),則a100的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)常數(shù)a>0,(ax2+
1
x
4的展開式中x3的系數(shù)為
3
2
,則a=( 。
A、
1
4
B、
1
2
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=sinx,x∈[0,2π]與坐標(biāo)軸圍成的面積(  )
A、4B、3C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的程序框圖,若輸出的s的值是14,則框圖中的n的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案