平面上有四點(diǎn)A、B、Q、P,其中A、B為定點(diǎn),且|AB|=數(shù)學(xué)公式,P、Q為動(dòng)點(diǎn),滿足|AP|=|PQ|=|QB|=1,△APB和△PQB的面積分別為m、n.
        (1)求∠A=30°,求∠Q
        (2) 求m2+n2的最大值.

        解:(1)由余弦定理得PB2=1+3-2cosA,PB2=1+1-2cosQ
        ∴4-2cosA=2-2cosQ,由A=30°求得cosQ=
        ∴Q=60
        (2)m2+n2=(×1×sinA)2+(×1×1×sinQ)2=sin2A+(1-cos2Q)=-(cosA-2+
        ∴當(dāng)cosA=時(shí),m2+n2的最大值為
        分析:(1)由余弦定理分別表示出PB,建立等式求得cosQ的值,進(jìn)而求得Q.
        (2)分別利用三角形面積公式表示出m和n,進(jìn)而代入m2+n2中整理成關(guān)于cosA的表達(dá)式,根據(jù)cosA的范圍和二次函數(shù)的性質(zhì)求得函數(shù)的最大值.
        點(diǎn)評(píng):本題主要考查了余弦定理的應(yīng)用,二次函數(shù)的性質(zhì).考查了學(xué)生基礎(chǔ)知識(shí)的掌握和基本運(yùn)算的能力.
        練習(xí)冊(cè)系列答案
        相關(guān)習(xí)題

        科目:高中數(shù)學(xué) 來源: 題型:

        平面上有四點(diǎn)A、B、Q、P,其中A、B為定點(diǎn),且|AB|=
        3
        ,P、Q為動(dòng)點(diǎn),滿足|AP|=|PQ|=|QB|=1,△APB和△PQB的面積分別為m、n.
        (1)求∠A=30°,求∠Q
        (2) 求m2+n2的最大值.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源:2010年遼寧省高一下學(xué)期第一次月考數(shù)學(xué) 題型:解答題

        平面上有四點(diǎn)A、B、Q、P,其中A、B為定點(diǎn),且, P、Q為動(dòng)點(diǎn),滿足,⊿APB和⊿PQB的面積分別為。

        (1)求,求       (2) 求的最大值

         

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

        平面上有四點(diǎn)A、B、Q、P,其中A、B為定點(diǎn),且|AB|=
        3
        ,P、Q為動(dòng)點(diǎn),滿足|AP|=|PQ|=|QB|=1,△APB和△PQB的面積分別為m、n.
        (1)求∠A=30°,求∠Q
        (2) 求m2+n2的最大值.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源:0106 月考題 題型:解答題

        平面上有四點(diǎn)A、B、Q、P,其中A、B為定點(diǎn),且,P、Q為動(dòng)點(diǎn),滿足|AP|=|PQ|=|QB|=1,△APB和△PQB的面積分別為m,n。
        (1)若∠A=30°,求∠Q;
        (2)求m2+n2的最大值。

        查看答案和解析>>

        同步練習(xí)冊(cè)答案