20.i為虛數(shù)單位,復數(shù)$\frac{2i}{1-i}$在復平面內(nèi)對應的點到原點的距離為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

分析 由復數(shù)代數(shù)形式的乘除運算化簡復數(shù)$\frac{2i}{1-i}$,求出在復平面內(nèi)對應的點的坐標,則答案可求.

解答 解:$\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}=-1+i$,
復數(shù)$\frac{2i}{1-i}$在復平面內(nèi)對應的點的坐標為:(-1,1),到原點的距離為:$\sqrt{2}$.
故選:C.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)y=f(x)為R上的奇函數(shù),其零點為x1,x2,…,x2017,則x1+x2+…+x2017=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,某船在海上航行中遇險發(fā)出呼救信號,我海上救生艇在A處獲悉后,立即測出該船在方位角45°方向,相距10海里的C處,還測得該船正沿方位角105°的方向以每小時9海里的速度行駛,救生艇立即以每小時21海里的速度前往營救,則救生艇與呼救艇與呼救船在B處相遇所需的最短時間為$\frac{2}{3}$小時.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C所對應的邊分別為a,b,c,且$\frac{c}=\sqrt{2}sinC$.
(1)求B;
(2)若a=6,△ABC的面積為9,求b的長,并判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知向量$\vec a,\vec b$的夾角為60°,$|\vec a|=2,|\vec b|=1$,則$\vec a$在$\vec b$上的投影為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在平面直角坐標系中,已知點M(1,0),P(x,y)為平面上一動點,P到直線x=2的距離為d,$\frac{|PM|}upsbexk$=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)不過原點O的直線l與C相交于A,B兩點,線段AB的中點為D,直線OD與直線x=2交點的縱坐標為1,求△OAB面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>a>0})$的左焦點關于C的一條漸近線的對稱點在另一條漸近線上,則C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在正棱柱ABC-A1B1C1中,D是AC的中點,AA1:AB=$\sqrt{2}$:1,則異面直線AB1與BD所成的角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=1-2sin2(x+$\frac{π}{4}$)是( 。
A.以2π為周期的偶函數(shù)B.以π為周期的偶函數(shù)
C.以2π為周期的奇函數(shù)D.以π為周期的奇函數(shù)

查看答案和解析>>

同步練習冊答案