已知數(shù)列{an}滿足a1=
1
3
,且當(dāng)n≥2時,an=
an-1
2-an-1

(1)求證:數(shù)列{
1
an
-1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:對任意的正整數(shù)n都有
2
3
(1-
1
2n
)≤Sn
5
6
考點(diǎn):數(shù)列遞推式,等比關(guān)系的確定
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)將n≥2an=
an-1
2-an-1
變形整理得,從數(shù)列{
1
an
-1}是以2為首項(xiàng),2為公比的等比數(shù)列,由此即可得到數(shù)列{an}的通項(xiàng)公式;
(2)應(yīng)用放縮法證明不等式,數(shù)列的前n項(xiàng)和,Sn=a1+a2+…+an=
1
1+21
+
1
1+22
+…+
1
1+2n
,而an=
1
1+2n
1
3
1
2n-1
,an=
1
1+2n
1
2n
,再根據(jù)等比數(shù)列的前n項(xiàng)公式,求證出結(jié)論
解答: 解:(1)∵an=
an-1
2-an-1

∴2an-anan-1=an-1,
2
an-1
-1=
1
an
,
1
an
-1=2(
1
an-1
-1)
∵a1=
1
3
1
a1
-1=2,
∴數(shù)列{
1
an
-1}是以2為首項(xiàng),2為公比的等比數(shù)列,
1
an
-1=2×2n-1=2n
∴an=
1
1+2n


(2)∵Sn=a1+a2+…+an=
1
1+21
+
1
1+22
+…+
1
1+2n
,
∵an=
1
1+2n
1
3
1
2n-1
,
∴Sn=
1
1+21
+
1
1+22
+…+
1
1+2n
1
3
(1+
1
21
+
1
22
+…+
1
2n-1
)=
1
3
1-(
1
2
)n
1-
1
2
=
2
3
(1-
1
2n

∵an=
1
1+2n
1
2n
,
∴Sn=
1
1+21
+
1
1+22
+…+
1
1+2n
1
3
+
1
22
+
1
23
+…+
1
2n
)=
1
3
+
1
4
(1-(
1
2
)n-1)
1-
1
2
=
1
3
+
1
2
-(
1
2
)n
1
3
+
1
2
=
5
6
,
∴對任意的正整數(shù)n都有
2
3
(1-
1
2n
)≤Sn
5
6
點(diǎn)評:本題考查數(shù)列的遞推式,在已知a1的情況下求數(shù)列的通項(xiàng)公式,并且證明了關(guān)于前n項(xiàng)和的一個不等式,著重考查了等比數(shù)列的通項(xiàng)公式、求和公式和運(yùn)用放縮法證明不等式恒成立等知識,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以-3i+
2
的虛部為實(shí)部,以-3i2+
2
i的實(shí)部為虛部的復(fù)數(shù)是(  )
A、3-3i
B、-3+3i
C、-
2
+
2
i
D、
2
+
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a6=2,a5=5,則數(shù)列{lgan}的前10項(xiàng)和等于( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為互不相等的實(shí)數(shù),求證:a4+b4+c4>abc(a+b+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2x+2msinx-2m-2
(1)若|x|≤
π
2
,f(x)的最大值為1,求實(shí)數(shù)m的值
(2)若當(dāng)0≤x≤
π
6
時,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程(x-y)2+(xy-1)2=0的曲線是(  )
A、一條直線和一條雙曲線
B、兩條雙曲線
C、兩個點(diǎn)
D、以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}對任意的m,n∈N*,都有an+m=anam,滿足a2+a4=20,數(shù)列{bn}滿足b1=1,公差d≠0,若b1,b3,b9成等比數(shù)列.
(1)求數(shù)列{an}的前n項(xiàng)和Sn,以及{bn}的通項(xiàng)公式;
(2)若cn=bnSn-1,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要建造一個容積為1200m3,深為6m的長方體無蓋蓄水池,池壁的造價為95元/m2,池底的造價為135元/m2,怎樣設(shè)計水池的長與寬,才能使水池的總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+Sn+1=2n2+2n+1(n∈N+
(1)若{an}是等差數(shù)列,求a8
(2)若a1=1,求S100

查看答案和解析>>

同步練習(xí)冊答案