設(shè)f(x)=ax2+bx,若1≤f(1)≤2,3≤f(1)≤4,則f(2)的取值范圍是_       ___

 

答案:
解析:

時(shí),Pn=1,Qn=1所以Pn=Qn,當(dāng)-1<x<0時(shí),猜想Pn<Qn.用數(shù)學(xué)歸納法證明,略.綜上.當(dāng)x>0時(shí)Pn>Qn;當(dāng)x=0時(shí)Pn=Qn,當(dāng)-1<x<0時(shí)Pn<Qn

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
ax2+bx

(1)當(dāng)a=-1,b=4時(shí),求函數(shù)f(ex)(e是自然對(duì)數(shù)的底數(shù).)的定義域和值域;
(2)求滿足下列條件的實(shí)數(shù)a的值:至少有一個(gè)正實(shí)數(shù)b,使函數(shù)f(x)的定義域和值域相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
ax2+bx
,求滿足下列條件的實(shí)數(shù)a的值:至少有一個(gè)正實(shí)數(shù)b,使函數(shù)f(x)的定義域和值域相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+c,且-3≤f(1)≤1,-2≤f(2)≤3,求f(3)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+bx滿足-1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+bx,1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案