A. | 有最大值2,最小值2(2-$\sqrt{2}$)2 | B. | 有最大值2,最小值0 | ||
C. | 有最大值10,最小值2(2-$\sqrt{2}$)2 | D. | 最值不存在 |
分析 先分析解析式的幾何意義,結(jié)合換元,得到t的范圍,換元后配方,得到最值.
解答 解:∵x≥0,y≥0,
∴x2+y2=4,可以看做一個(gè)$\frac{1}{4}$圓,
令t=x+y,要與圓有交點(diǎn),得到2≤t≤2$\sqrt{2}$,
∵μ=x•y-4(x+y)+10=$\frac{{t}^{2}-4}{2}$-4t+10
=$\frac{1}{2}$t2-4t+8
=$\frac{1}{2}$(t-4)2
∵2≤t≤2$\sqrt{2}$,
∴μ的最值情況是2(2-$\sqrt{2}$)2≤μ≤2.
故選:A.
點(diǎn)評(píng) 本題考查幾何意義以及換元思想,和二次函數(shù)求最值,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | e=$\sqrt{2}$ | B. | e=$\frac{\sqrt{6}}{2}$ | C. | e=$\frac{\sqrt{30}}{5}$ | D. | e=$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,0) | B. | (0,1) | C. | (3,1) | D. | (2,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com