如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A,B是圓上兩動點(diǎn),且滿足∠APB=90°, 求矩形APBQ的頂點(diǎn)Q的軌跡方程。
解:設(shè)AB的中點(diǎn)為R,坐標(biāo)為(x,y),
則在Rt△ABP中,|AR|=|PR|
又因?yàn)镽是弦AB的中點(diǎn),依垂徑定理:在Rt△OAR 中,|AR|2=|AO|2-|OR|2=36-(x2+y2

所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0
因此點(diǎn)R在一個圓上,而當(dāng)R在此圓上運(yùn)動時,Q點(diǎn)即在所求的軌跡上運(yùn)動
設(shè)Q(x,y),R(x1,y1),
因?yàn)镽是PQ的中點(diǎn),
所以
代人方程x2+y2-4x-10=0

整理得x2+y2=56,這就是所求的軌跡方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A,B是圓上兩動點(diǎn),且滿足∠APB=90°,求AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動點(diǎn),且滿足∠APB=90°,求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動點(diǎn),

且滿足∠APB=90°,求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省廣州一中高三數(shù)學(xué)二輪復(fù)習(xí):圓錐曲線(解析版) 題型:解答題

如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動點(diǎn),且滿足∠APB=90°,求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案