【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長(zhǎng)線與AB的延長(zhǎng)線交于點(diǎn)E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長(zhǎng).
【答案】證明:(Ⅰ)∵⊙O是以AB為直徑的圓,∠ACB=90°,∴點(diǎn)C在⊙O上,連接OC,可得∠OCA=∠OAC=∠DAC,∴OC∥AD,
又∵AD⊥DC,∴DC⊥OC,∵OC為半徑,∴DC是⊙O的切線.
(Ⅱ)解:∵DC是⊙O的切線,∴EC2=EBEA,又∵EB=6,EC=6 ,∴EA=12.
∵∠ECB=∠EAC,∠CEB=∠AEC,∴△ECB∽△EAC,∴ ,AC= BC,
∵AC2+BC2=AB2=36,∴BC=2
【解析】(Ⅰ)先得出點(diǎn)C在⊙O上,連接OC,可得∠OCA=∠OAC=∠DAC,從而OC∥AD,結(jié)合AD⊥DC得出DC⊥OC,從而DC是⊙O的切線(Ⅱ)利用切割線定理求出EA=12,再證出△ECB∽△EAC,得出AC= BC,在RT△ACB中求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,點(diǎn)E為線段PC的中點(diǎn),點(diǎn)F在線段AB上.
(1)若AF= ,求證:CD⊥EF;
(2)設(shè)平面DEF與平面DPA所成二面角的平面角為θ,試確定點(diǎn)F的位置,使得cosθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識(shí),某班級(jí)舉辦一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng).現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:
序號(hào) | 分?jǐn)?shù)段 | 人數(shù) | 頻率 |
1 | 10 | 0.20 | |
2 | ① | 0.44 | |
3 | ② | ③ | |
4 | 4 | 0.08 | |
合計(jì) | 50 | 1 |
(1)填充上述表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);
(2)若利用組中值近似計(jì)算數(shù)據(jù)的平均數(shù),求此次數(shù)學(xué)史初賽的平均成績(jī);
(3)甲同學(xué)的初賽成績(jī)?cè)?/span>,學(xué)校為了宣傳班級(jí)的學(xué)習(xí)經(jīng)驗(yàn),隨機(jī)抽取分?jǐn)?shù)在的4位同學(xué)中的兩位同學(xué)到學(xué)校其他班級(jí)介紹,求甲同學(xué)被抽取到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓的方程為,過點(diǎn)的直線與圓交于點(diǎn),與軸交于點(diǎn),設(shè),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點(diǎn).將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點(diǎn),圖2所示.
(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動(dòng)點(diǎn),當(dāng) 為何值時(shí),二面角P﹣MC﹣B的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為, ,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)的頂點(diǎn)都在橢圓上,其中關(guān)于原點(diǎn)對(duì)稱,試問能否為正三角形?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線上,且圓經(jīng)過點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)直線過點(diǎn)且與圓相交,所得弦長(zhǎng)為4,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算電費(fèi)每月用電不超過100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.
Ⅰ.設(shè)月用電x度時(shí),應(yīng)交電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
Ⅱ.小明家第一季度繳納電費(fèi)情況如下:
月份 | 一月 | 二月 | 三月 | 合計(jì) |
繳費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
問小明家第一季度共用多少度?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)函數(shù)在區(qū)間[﹣1,1]上的最小值記為,求的解析式;
(2)求(1)中的最大值;
(3)若函數(shù)在[2,4]上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com