分析 (1)將an=Sn-Sn-1,代入已知等式,化簡(jiǎn)可證;
(2)利用(1)的結(jié)論,用累加法求通項(xiàng)公式.
解答 (1)證明:${S}_{n}={n}^{2}({S}_{n}-{S}_{n-1})-{n}^{2}(n-1)$,
所以$\frac{n}{n-1}{S}_{n-1}=\frac{n+1}{n}{S}_{n}-n$,
所以bn-bn-1=n(n≥2).
(2)解:由(1)得到b1=1,bn-bn-1=n,bn-1-bn-2=n-1,…,b2-b1=2,
累加得$_{n}=\frac{{n}^{2}+n}{2}$,
∴${S}_{n}=\frac{{n}^{2}}{2},{a}_{n}={S}_{n}-{S}_{n-1}=\frac{2n-1}{2}(n≥2)$,
經(jīng)檢驗(yàn)${a}_{1}=\frac{1}{2}$,符合${a}_{n}=\frac{2n-1}{2}$,
∴${a}_{n}=\frac{2n-1}{2}$.
點(diǎn)評(píng) 本題考查了數(shù)列前n項(xiàng)和與an的關(guān)系式運(yùn)用以及利用累加法求數(shù)列的通項(xiàng)公式;屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 22016 | D. | 32016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 5 | C. | 7 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
技術(shù)改造的月份x | 1 | 2 | 3 | 4 |
煤炭消耗量y | 4.5 | 4 | 3 | 2.5 |
A. | $\widehat{y}$=0.7x+5.25 | B. | $\widehat{y}$=-0.6x+5.25 | C. | $\widehat{y}$=-0.7x+6.25 | D. | $\widehat{y}$=-0.7x+5.25 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com