函數(shù)f(x)=
-x2-x+6
的單調(diào)減區(qū)間為
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t(x)=-x2-x+6≥0,求得函數(shù)f(x)的定義域為[-3,2],且f(x)=
t(x)
,本題即求函數(shù)t(x)在[-3,2]上的減區(qū)間;再利用二次函數(shù)的性質(zhì)可得t(x)在[-3,2]上的減區(qū)間.
解答: 解:令t(x)=-x2-x+6≥0,求得-3≤x≤2,故函數(shù)f(x)的定義域為[-3,2],且f(x)=
t(x)
,
故本題即求函數(shù)t(x)在[-3,2]上的減區(qū)間.
再利用二次函數(shù)的性質(zhì)可得t(x)在[-3,2]上的減區(qū)間為[-
1
2
,2],
故答案為:[-
1
2
,2].
點評:本題主要考查二次函數(shù)的性質(zhì),復(fù)合函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1
x-1
<1的解集記為p,關(guān)于x的不等式x2+(a-1)x-a>0的解集記為q.若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,-2),
b
=(-2,4),
c
=(-1,-2),若表示向量4
a
,4
b
-2
c
,2(
a
-
c
),
d
的有向線段首尾相接能構(gòu)成四邊形,則向量
d
為( 。
A、(2,12)
B、(-2,12)
C、(2,-12)
D、(-2,-12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:(k-3)x+(4-k)y+1=0與直線l2:2(k-3)x-2y+3=0.
(1)若這兩條直線垂直,求k的值;
(2)若這兩條直線平行,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2-3x+2
的單調(diào)遞增區(qū)間為( 。
A、[
3
2
,+∞)
B、(-∞,
3
2
]
C、[2,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{(x,y)|
2x-y=1
x+4y=5
}=( 。
A、{1,1}B、(1,1)
C、{(1,1)}D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tanωx的最小正周期為
π
2
,則正實數(shù)ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=1+i,則
1+z
1-z
=( 。
A、2-iB、2+i
C、-1+2iD、1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲,乙兩人約定上午7:00至8:00之間到某站乘公共汽車,在這段時間內(nèi)有2班公共汽車,它們開車的時刻分別是7:30和8:00,甲、乙兩人約定,見車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達(dá)車站的時刻是互相不牽連的,且每人在7時到8時的任何時刻到達(dá)車站是等可能的)

查看答案和解析>>

同步練習(xí)冊答案