【題目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求證:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.

【答案】
(1)證明:∵∠ACB=90°,∴BC⊥AC.

又SA⊥平面ABC,BC平面ABC,

∴SA⊥BC.

又SA∩AC=A,

∴BC⊥平面SAC.


(2)證明:∵BC⊥平面SAC,AD平面SAC,

∴BC⊥AD.

又SC⊥AD,SC∩BC=C,

SC平面SBC,BC平面SBC,

∴AD⊥平面SBC.


【解析】(1)根據(jù)線面垂直,得到線線垂直,從而求出線面垂直即可;(2)要證線面垂直,關鍵要找到兩條相交直線與之都垂直,先由線面垂直得線線垂直,然后利用線面垂直的判定得線面垂直繼而得到線線垂直AD⊥BC,問題從而得證.
【考點精析】本題主要考查了直線與平面垂直的判定的相關知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線y2=2x的焦點F作直線交拋物線于A,B兩點,若|AB|= ,|AF|<|BF|,則|AF|為(
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log 的圖象關于原點對稱,其中a為常數(shù).
(1)求a的值;
(2)當x∈(1,+∞)時,f(x)+log (x+1)<m恒成立,求實數(shù)m的取值范圍;
(3)若關于x的方程f(x)=log (x+k)在[2,3]上有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性及極值;

(Ⅱ)若不等式內(nèi)恒成立,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的通項公式為an=25n , 數(shù)列{bn}的通項公式為bn=n+k,設cn= 若在數(shù)列{cn}中,c5≤cn對任意n∈N*恒成立,則實數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡外賣在市的普及情況, 市某調(diào)查機構借助網(wǎng)絡進行了關于網(wǎng)絡外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用網(wǎng)絡外賣

偶爾或不用網(wǎng)絡外賣

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為市使用網(wǎng)絡外賣的情況與性別有關?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡外賣的人數(shù)為,求的數(shù)學期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二(4)班有男生28人,女生21人,用分層抽樣的方法從全班學生中抽取一個調(diào)查小組,調(diào)查該校學生對2013年1月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為 ,則抽取的女生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在等差數(shù)列中, 為其前項和, ,;等比數(shù)列的前項和.

(I)求數(shù)列, 的通項公式;

(II)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極坐標系的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為為參數(shù),),設, 直線與曲線交于 兩點.

(1)當時,求的長度;

(2)求的取值范圍.

查看答案和解析>>

同步練習冊答案